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1. Introduction
Motivation

This chapter discusses

A formal introduction to multi-dimensional functions

Key function properties: invertability, convexity (and concavity)

Multivariate differentiation (main focus)

Formal definition and derivation

Application

Multivariate integration: concept and key theorems
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1. Introduction
Motivation

Thus far: Linear Algebra (linear operations and equation systems)

Now: analysis of functions, study of (small) variations

Here: generalizing the derivative to functions f : Rn 7→ Rm

Why?: Optimization problems with many variables (goods,
production inputs, statistical parameters)

Many struggles in the 1st PhD semester were encountered because of
issues with understanding derivatives. . .
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1. Introduction
Key Concepts

Function f : X 7→ Y with domain X , codomain Y and image
im(f ) = f [X ]

X ⊆ R: univariate function

X ⊆ Rn: multivariate function

Y ⊆ R: real-valued function

Y ⊆ Rm: vector-valued function

How to call f : R3 7→ R2?

Examples:

Multivariate, real-valued function: x 7→ ‖x‖, x 7→ x ′Ax , (x , y) 7→ x · y
Multivariate, vector-valued function: x 7→ Ax

Graph:

G (f ) = {(x , y) ∈ X × Y : y = f (x)} = {(x , f (x)) : x ∈ X}
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2. Basics: Invertability and Convexity
Invertability of Functions

Inverse function f −1 of f : f (f −1(y)) = y and f −1(f (x)) = x
More formally: f −1 ◦ f = IdX , f ◦ f −1 = IdY

IdZ : Z 7→ Z , z 7→ z is the identity function

Consistent with our usual notion of inversion “x · x−1 = 1”

Ch. 0: For X ,Y ⊆ R, we can invert f : X 7→ Y if and only if for
every y ∈ Y we have exactly one x(y) ∈ X so that f (x(y)) = y

The two conditions transfer to arbitrary X ,Y : for every y ∈ Y , . . .

at least one x maps to y (“surjectivity”): ∃x ∈ X : f (x) = y

at most one x maps to y (“injectivity”): x1 6= x2 ⇒ f (x1) 6= f (x2)

Easy to show: f invertible ⇔ f bijective (= injective + surjective)

Idea: f −1 maps y to the unique x(y) that maps to y under f
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2. Basics: Invertability and Convexity
Convexity (and Concavity) of General Functions

Definition (Convex and Concave Real Valued Function)

Let X ⊆ Rn be a convex set. A function f : X → R is convex if for any x , y ∈ X
and λ ∈ [0, 1],

f (λx + (1− λ)y) ≤ λf (x) + (1− λ)f (y)

Moreover, if for any x , y ∈ X such that y 6= x and λ ∈ (0, 1),

f (λx + (1− λ)y) < λf (x) + (1− λ)f (y)

we say that f is strictly convex. Moreover, we say that f is (strictly) concave if
−f is (strictly) convex.

Alternative characterization of concavity (line 1) and strict concavity (line 2)

f (λx + (1− λ)y) ≥ λf (x) + (1− λ)f (y) ∀x , y ∈ X∀λ ∈ [0, 1],

f (λx+(1−λ)y) > λf (x)+(1−λ)f (y) ∀x , y ∈ X so that x 6= y and ∀λ ∈ (0, 1).
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2. Basics: Invertability and Convexity
Convexity: Intuition

In what follows: focus on convexity

Recall: λx + (1− λ)y (λ ∈ [0, 1]) is a convex combination of x and y

Convexity of functions = statement about convex combinations across
domain and codomain of the function!

f (λx + (1− λ)y) must always be well-defined → convex domain

G (f ) ⊆ R2 (i.e. f univariate, real-valued function):
(1− λ)x + λy , λ ∈ [0, 1] defines an interval between x and y

λ = 0: start from x

increasing λ moves away from x towards y

(1− λ)f (x) + λf (y) is the line piece connecting f (x) and f (y)

Let’s draw a convex and a concave function
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2. Basics: Invertability and Convexity
Convexity of Bivariate Functions

f : X 7→ R, X ⊆ R2

For any fixed x , y ∈ X ,
(1− λ)x + λy = x + λ(y − x)
expands in a single direction

Gives univariate function
t 7→ f (x + t(y − x))

⇒ convex?
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2. Basics: Invertability and Convexity
Convexity of Multivariate Functions

Also for X ⊆ Rn: fixing x , y ∈ X reduces convexity to one dimension

→ f is convex if and only if any univariate reduction is convex

After picking x ∈ X , choosing y ∈ X arbitrarily is equivalent to
choosing z ∈ Rn with x + z ∈ X arbitrarily (z = y − x). This gives:

Theorem (Graphical Characterization of Convexity)

Let X ⊆ Rn be a convex set and f : X 7→ R. Then, f is (strictly) convex
if and only if ∀x ∈ X and ∀z ∈ Rn\{0} with x + z ∈ X , the function
g : R 7→ R, t 7→ f (x + tz) is (strictly) convex.

Let’s use this theorem (“strictly” variant) to give an example of a
convexity proof.
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2. Basics: Invertability and Convexity
Convexity of Multivariate Functions: A Corollary

Corollary (Disproving Convexity)

Let X ⊆ Rn be a convex set and f : X 7→ R. Then, if there exist x0 ∈ X
and i ∈ {1, . . . , n} such that g : R 7→ R, t 7→ f (t 7→ x + t · ei ) is not
(strictly) convex, then f is not (strictly) convex.

Necessary condition of convexity: convex in every fundamental
direction of Rn

Consider f : Rn
+ 7→ Rn with

f (x) = h(x1, . . . , xn−1) ·
√
xn

where h is an arbitrarily complex, unspecified function. Is f convex?
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2. Basics: Invertability and Convexity
Weak Convexity

Optimization: convexity immensely helpful, but restrictive concept

Can we weaken the concept and preserve (most of!) the desirable
properties? Yes!

Level sets in the domain of f :

Definition (Lower and Upper Level Set of a Function)

Let X ⊆ Rn be a convex set and f : X → R be a real-valued function.
Then, for c ∈ R, the sets

L−c := {x ∈ X : f (x) ≤ c} and L+c := {x ∈ X : f (x) ≥ c}

are called the lower-level and upper level set of f at c , respectively.
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2. Basics: Invertability and Convexity
Level Sets of Convex and Concave Functions

Quasi-convex (-concave) function: any lower (upper) level set convex
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2. Basics: Invertability and Convexity
Level Sets of Quasi-Convex and -Concave Functions

Which functions are quasi-convex/quasi-concave? Which are quasi-linear?

Quasi-linear: both quasi-convex and quasi-concave

Intuition: only linear functions are both convex and concave
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2. Basics: Invertability and Convexity
Quasi-Convexity: Workable Definitions

Theorem (Quasiconvexity, Quasiconcavity)

Let X ⊆ Rn be a convex set. A real-valued function f : X → R is
quasiconvex if and only if

∀x , y ∈ X∀λ ∈ [0, 1] : f (λx + (1− λ)y) ≤ max{f (x), f (y)}

Conversely, f is quasiconcave if and only if

∀x , y ∈ X∀λ ∈ [0, 1] : (λx + (1− λ)y) ≥ min{f (x), f (y)}

Analogous definition: Strict Quasiconvexity (line 1), Strict Quasiconcavity
(line 2)

∀x , y ∈ X such that x 6= y and ∀λ ∈ (0, 1) : f (λx + (1− λ)y) < max{f (x), f (y)}

∀x , y ∈ X such that x 6= y and ∀λ ∈ (0, 1) : f (λx + (1− λ)y) > min{f (x), f (y)}
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3. Multivariate Calculus
What and Why?

What is (multivariate) Calculus? Defininition Wikipedia (summarized)

“Mathematical study of continuous change”

Differential calculus: instantaneous/marginal rates of change and
slopes of curves

Integral calculus: accumulation of quantities, areas under and between
curves

Fundamental theorem of calculus: integration and differentiation are
inverse operations (intuition?)

Why care?

Cannot optimize without derivatives

Economics: marginal utility, accumulations across households
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3. Multivariate Calculus
Differentiation: Review Univariate, Real-Valued Functions

As before: start from what we know and generalize

If X ⊆ R, what is “the slope” of f : X 7→ R?

Relative change of f (x) given variation in x at x0 ∈ X :

∆f (x)

∆x
:=

f (x)− f (x0)

x − x0
=

f (x0 + h)− f (x0)

h
, h := x − x0 ∈ R

Marginal/instantaneous rate of change: limit h→ 0 (existence?)
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3. Multivariate Calculus
Differentiation: Review Univariate, Real-Valued Functions

Definition (Univariate Real-Valued Function: Differentiability and
Derivative)

Let X ⊆ R and consider the function f : X 7→ R. Let x0 ∈ X . If

lim
h→0

f (x0 + h)− f (x0)

h

exists, f is said to be differentiable at x0, and we call this limit the
derivative of f at x0, denoted by f ′(x0). If for all x0 ∈ X , f is
differentiable at x0, f is said to be differentiable over X or differentiable.
Then, the function f ′ : X 7→ R, x 7→ f ′(x) is called the derivative of f .

Differentiability: point-specific vs. domain (e.g. | · |)

Derivative f ′ = function, derivative at x0, f ′(x0) = real number!
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3. Multivariate Calculus
Differentiation: Review Univariate, Real-Valued Functions

Definition (Univariate Real-Valued Functions: Differential Operator)

Let X ⊆ R, define D1(X ,R) = {f : X 7→ R : f is differentiable over X},
and let FX := {f : X 7→ R}. Then, the differential operator is defined as
the function

d

dx
: D1(X ,R) 7→ FX , f 7→ f ′

where f ′ denotes the derivative of f ∈ D1(X ,R).

(Differential) Operator: function between function spaces

f ′ = d
dx (f ) is a specific value in the codomain of d

dx (just like f ′(x))

Formally precise f ′(x) =
[
d
dx (f )

]
(x) vs. convention: f ′(x) = df

dx (x)

Please don’t write df (x)
dx
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3. Multivariate Calculus
Differentiation: Review Univariate, Real-Valued Functions

Levels of objects in differentiation: operator, function, value

Let’s practice this distinction with some common rules

Basis operations in function spaces (X : domain of function(s))

“+”: f + g is such that ∀x ∈ X : (f + g)(x) = f (x) + g(x)

“·”: λf is such that ∀x ∈ X : (λf )(x) = λ · f (x)

Function product (fg)(x) = f (x) · g(x)

quotient in analogy if ∀x ∈ X : g(x) 6= 0
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3. Multivariate Calculus
Differentiation: Review Univariate, Real-Valued Functions

Theorem (Rules for Univariate Derivatives)

Let X ⊆ R, f , g∈ D1(X ,R) and λ, µ ∈ R. Then,

(i) (Linearity) λf + µg is differentiable and d
dx (λf + µg) = λ df

dx + µdg
dx ,

(ii) (Product Rule) The product fg is differentiable and
d
dx (fg) = df

dx · g + f · dgdx
(iii) (Quotient Rule) If ∀x ∈ X , g(x) 6= 0, the quotient f /g is

differentiable and d
dx (f /g) =

df
dx
·g−f · dg

dx
g ·g

(iv) (Chain Rule) if g ◦ f exists, the function is differentiable and
d
dx (g ◦ f ) =

(
dg
dx ◦ f

)
· dfdx .

Script: rules for specific values and differentiability at x0 ∈ X
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3. Multivariate Calculus
Differentiation: Properties to Generalize

Now: local behavior of multivariate functions we cannot sketch?

For univariate, real-valued functions, differentiability of f at x0 ∈ X
implies. . .

1 continuity at x0

2 Existence of a good linear approximation to f around x0

and differentiability of f on (a, b) ⊆ R implies that

3 the sign of f ′ is determines if the function is increasing, decreasing, or
constant
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3. Multivariate Calculus
Differentiation: “Good Linear Approximation”?

Taylor = key take-away from this class!

First order Taylor approximation to f at x0:

T1,x0(x) = f (x0) + f ′(x0)(x − x0)

Error: ε1,x0(x) := f (x)− T1,x0(x) (formula:
next slide)

“Good” approximation: limx→x0
ε1(x)
x−x0 = 0 (intuition?; caution?)

Taylor expansion of first order: decomposition of f into linear and
(non-linear) remainder term, i.e.

f (x) = T1,x0(x) + ε1,x0(x)

Expansion includes the error, approximation does not
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3. Multivariate Calculus
Taylor of Generalized Order: Definition

Theorem (Taylor Expansion for Univariate Functions)

Let X ⊆ R and f ∈ Dd(X ,R) where d ∈ N ∪ {∞}. For N ∈ N ∪ {∞},
N ≤ k, the Taylor expansion of order N for f at x0 ∈ X is

f (x) = TN,x0(x) + εN,x0(x) = f (x0) +
N∑

n=1

f (n)(x0)

n!
(x − x0)n + εN,x0(x),

where εN,x0(x) is the approximation error of TN,x0 for f at x ∈ X . Then,
the approximation quality satisfies limh→0 εN,x0(x0 + h)/hN = 0. Further,
if f is N + 1 times differentiable, there exists a λ ∈ (0, 1) such that

εN,x0(x0 + h) =
f (N+1)(x0 + λh)

(N + 1)!
hN+1.

Faculty of n ∈ N: n! = 1 · 2 · . . . · (n − 1) · n
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3. Multivariate Calculus
Taylor of Generalized Order: Comments

Approximation quality: limh→0 εN(x0 + h)/hN = 0

The larger N, the “faster” hN → 0 (think 0.1n for increasing n)

Larger N increase order of approximation quality

Script gives proof for N = 1, 2, general intuition is similar

Mean Value Theorem (corollary of Taylor’s theorem): for any
differentiable f : X 7→ R (X ⊆ R), for any x1, x2 ∈ X such that
x2 > x1, there exists x∗ ∈ (x1, x2) such that

f ′(x∗) =
f (x2)− f (x1)

x2 − x1
.

Useful to check if critical values (f ′(x) = 0) exist

Proof: see exercises
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4. Multivariate Calculus: Differentiation
Differentiation: Multivariate Real-Valued Functions

Roadmap for multivariate derivatives (f : X 7→ Y , esp. X ⊆ Rn)
1 How to formally think about a multivariate derivative?

derivative should describe expansion in any possible direction

X ⊆ R: variation on an infinitely small intervall/ball around x0

2 Does an intuitively plausible candidate meet the formal definition?

Recall: convergence

univariate: limx→0 f (x) = c : |f (x)− c | < ε for |x − 0| = |x | < δ

multivariate: limx→0 f (x) = c : |f (x)− c | < ε for ‖x‖ < δ

→ tells us how to think about “limh→0” more generally!
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4. Multivariate Calculus: Differentiation
The Derivative – an Equivalent Characterization

when n = 1, d∗ is the derivative of f at x0 if

d∗ = lim
h→0

f (x0 + h)− f (x0)

h

Problem: if n > 1, the denominator has a vector ; not defined

But: expression is equivalent to (let’s see why)

lim
h→0

|f (x0 + h)− f (x0)− d∗ · h|
‖h‖

= 0

where ‖ · ‖ is a norm on R; and norms generalize to Rn!
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4. Multivariate Calculus: Differentiation

Definition (Multivariate Derivative of Real-valued Functions)

Let X ⊆ Rn and f : X 7→ R. Further, let x0 ∈ int(X ) (interior point).
Then, f is differentiable at x0 if there exists d∗ ∈ R1×n such that

lim
‖h‖→0

|f (x0 + h)− f (x0)− d∗h|
‖h‖

= 0.

Then, we call d∗ the derivative of f at x0, denoted df
dx (x0) or Df (x0). If f

is differentiable at any x0 ∈ X , we say that f is differentiable, and we call
df
dx : X 7→ R, x 7→ df

dx (x) the derivative of f .

Interior point: able to consider balls around x0 on which f is defined

Most textbooks use Df (x0) rather than df
dx (x0), is the same thing!

Derivative operator as before: mapping between function spaces
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4. Multivariate Calculus: Differentiation

Definition (Multivariate Derivative of Vector-valued Functions)

Let X ⊆ Rn and f : X 7→ Rm. Further, let x0 ∈ int(X ) (interior point).
Denote k‖ · ‖ as a norm of Rk , k ∈ {n,m}. Then, f is differentiable at x0
if there exists a matrix D∗ ∈ Rm×n such that

lim
n‖h‖→0

m‖f (x0 + h)− f (x0)− D∗h‖
n‖h‖

= 0,

Then, we call D∗ the derivative of f at x0, denoted df
dx (x0) or Df (x0). If f

is differentiable at any x0 ∈ X , we say that f is differentiable, and we call
df
dx : X 7→ Rm×n, x 7→ df

dx (x) the derivative of f .

Numerator norm: codomain, denominator norm: domain

Derivative as matrix: D∗h must be vector of same length as f (x)

Actually: encompasses the previous definition (m = 1)
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4. Multivariate Calculus: Differentiation
Generalizing the Derivative – Status Quo

Roadmap for multivariate derivatives

X How to formally think about a multivariate derivative?

2 Does an intuitively plausible candidate meet the formal definition?

Idea:

For n = 1, df
dx (x0) is scalar and characterizes the instantaneous change

along the one axis (i.e., fundamental direction) of R

For n > 1, df
dx (x0) is a vector of length n → collection of instantaneous

changes along all n individual axes of Rn?

Tool: directional derivative: allows to study the behavior of f around
x0 in a single direction z 6= 0
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4. Multivariate Calculus: Differentiation
Partial Derivatives, Gradient

Directional derivative: let fz,x0 : R 7→ R, t 7→ f (x0 + tz) for z 6= 0

Univariate directional derivative of f in direction z at x0:
dfz,x0
dt (0)

Evaluated at t = 0: focus on local behavior around x0 = x0 + 0 · z

Partial derivative of f at x0 with respect to xj :

∂f

∂xj
(x0) =

dfej ,x0
dt

(0) =
d

dt
f (x0 + tej)|t=0

=
d

dt
[f (x0,1, . . . , x0,j−1, x0,j + t, x0,j+1, . . . x0,n)]

∣∣
t=0

Variation along j-th axis around x0 (“holding xl , l 6= j constant”)

Also: j-th partial derivative (of f at x0); sometimes denoted fj(x0)

Gradient: ordered collection of partial derivatives (row vector!)

∇f (x0) =

(
∂f

∂x1
(x0),

∂f

∂x2
(x0), . . . ,

∂f

∂xn
(x0)

)
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4. Multivariate Calculus: Differentiation
Partial Derivatives and Gradient: Summary of Concepts

Partial differentiability

f : X 7→ R partially differentiable (p.d.) at x0: all partial derivatives
∂f
∂xj

(x0) and therefore the gradient at x0 ∈ X , ∇f (x0), exists

“point-specific to general”: f : X 7→ R p.d.: f p.d. at any x0 ∈ X

Set of p.d. functions from X to R: D1
p(X ,R) = {f : X 7→ R : f is p.d.}

Recall: univariate derivative is a real-valued function
∂f
∂xj

: X 7→ R, x0 7→ ∂f
∂xj

(x0) is a real-valued function

∇f : X 7→ R1×n, x0 7→ ∇f (x0) is a (real row-)vector-valued function

associated operators: mappings between function spaces
∂
∂xj

: D1
p(X ,R) 7→ FX , f 7→ fj = ∂f

∂xj

∇ : D1
p(X ,R) 7→ F 1×n

X , f 7→ ∇f
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4. Multivariate Calculus: Differentiation
Partial Derivatives and Gradient: Some Examples

Consider the following functions R2 7→ R:

f 1(x1, x2) = x1 + x2

f 2(x1, x2) = x1x2

f 3(x1, x2) = x1x
2
2 + cos(x1)

Consider an arbitrary point x0 = x ∈ R. Compute the gradients of f 1, f 2

and f 3 at x0!

How do the partial derivatives depend on the location x?

Now for the actual derivative: can we use the gradient?
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4. Multivariate Calculus: Differentiation
Generalizing the Derivative – the Last Step

Theorem (The Gradient and the Derivative)

Let X ⊆ Rn and f : X 7→ R such that f is differentiable at x0 ∈ int(X ).
Then, all partial derivatives of f at x0 exist, and df

dx (x0) = ∇f (x0).

Verbally: “derivative exists ⇒ derivative = gradient”; what about ⇐?

Theorem (Partial Differentiablility and Differentiability)

Let X ⊆ Rn, f : X 7→ R and x0 ∈ int(X ). If all the partial derivatives of f
at x0 exist and are continuous, then f is differentiable.

Set of continuously differentiable functions:

C 1(X ,R) :=

{
f : X 7→ R :

(
∀j ∈ {1, . . . , n} :

∂f

∂xj
is continuous

)}
f ∈ C 1(X ,R) ⇒ f is differentiable
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4. Multivariate Calculus: Differentiation
Generalizing the Derivative – Summary and Practice

Partial differentiability and differentiability

Generally, if f is differentiable, the derivative is equal to the gradient

⇒ If the gradient does not exist, f is not differentiable

Theoretically: may encounter weird D1 but not C 1 functions; issue not
too relevant in (economic) practice

In applications: taking the derivative of f : X 7→ R, X ⊆ Rn

1 Compute the gradient ∇f (if it exists)

2 Are all partial derivatives continuous? If so: ∇f is the derivative!

What about f : X 7→ Rm?
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4. Multivariate Calculus: Differentiation
Vector-valued Functions 1/3

Consider X ⊆ Rn, f : X 7→ Rm

f is ordered collection of real-valued functions which we already know
how to handle:

f =


f 1

f 2

...
f m

 so that ∀x ∈ X : f (x) =


f 1(x)
f 2(x)

...
f m(x)


where for any i ∈ {1, . . . ,m}, f i : X 7→ R (example?)

Idea: ordered collection of derivatives, i.e.

df

dx
=


∇f 1
∇f 2

...
∇f m
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4. Multivariate Calculus: Differentiation
Vector-valued Functions 2/3

Definition (Jacobian)

Let n,m ∈ Rn, X ⊆ Rn and f : X 7→ Rm and for i ∈ {1, . . . ,m}, let
f i : Rn 7→ R such that f = (f 1, . . . , f m)′. Let x0 ∈ X . Then, if at x0,
∀i ∈ {1, . . . ,m}, f i is partially differentiable with respect to any xj ,
j ∈ {1, . . . , n}, we call

Jf (x0) =


∇f 1(x0)
∇f 2(x0)

...
∇f m(x0)

 =


f 11 (x0) f 12 (x0) . . . f 1n (x0)
f 21 (x0) f 22 (x0) . . . f 2n (x0)

...
...

. . .
...

f m1 (x0) f m2 (x0) . . . f mn (x0)


the Jacobian of f at x0. If the above holds at any x0 ∈ X , we call the
mapping Jf : Rn 7→ Rn×m, x0 7→ Jf (x0) the Jacobian of f .

All partial derivative of any f i must exist (we write f ∈ D1
p(X ,Rn))
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4. Multivariate Calculus: Differentiation
Vector-valued Functions 3/3

Jacobian collects expansion in all fundamental directions of all
sub-functions f i , i ∈ {1, . . . ,m}. → Jacobian = derivative?

Theorem (The Jacobian and the Derivative)

Let X ⊆ Rn, f : X 7→ Rm and f 1, . . . , f m : X 7→ R such that
f = (f 1, . . . , f m)′. Further, let x0 ∈ int(X ) (interior point), and suppose
that f is differentiable at x0. Then, for any f i , i ∈ {1, . . . ,m}, all partial
derivatives of f i at x0 exist, and df

dx (x0) = Jf (x0).

As before: derivative exists if all partial deriv’s are continuous
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4. Multivariate Calculus: Differentiation
A step back

Why did our intuitive conjecture correspond to the derivative?

Recall lecture 1. . .

Vector spaces: generalize key intuitions of lower-dimensional spaces

Minimal structure (addition and multiplication by a constant). . .

. . . and an axiomatic way of thinking about distances

. . . was all we needed to generalize a complex and important concept
such as function differentiation
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4. Multivariate Calculus: Differentiation
Multivariate Differentiation Rules

Theorem (Rules for Multivariate Derivatives)

Let X ⊆ Rn, f , g : X 7→ Rm and h : Rm 7→ Rk . Suppose that f , g and h
are differentiable functions. Then,

(i) (Linearity) For all λ, µ ∈ R, λf + µg is differentiable and
d(λf+µg)

dx = λ df
dx + µdg

dx .

(ii) (Product Rule) f ′ · g is differentiable and d(f ′g)
dx = f ′ · dgdx + g ′ · dfdx .

(iii) (Chain Rule) h ◦ f is differentiable and d(h◦f )
dx = (dhdx ◦ f ) · dfdx .

Product rule: f ′, g ′ = transpose, not derivative; Quotient rule?

Careful about order (matrix products are not commutative)!

CR variant: for f (g(x)) = f (y(x), x) (L: precise; R: convention):

df ◦ g
dx

=
∂f ◦ g
∂y

dy

dx
+
∂f ◦ g
∂x

vs.
df

dx
=
∂f

∂y

dy

dx
+
∂f

∂x
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4. Multivariate Calculus: Differentiation
Second Derivative

Thus far: first derivative operator (·)′ generalized to ∇/J

In univariate, real-valued case: f ′′ = (f ′)′, we can generalize this logic

Recall: derivative increases order in codomain

Derivative of f : Rn 7→ R is vector-valued: ∇f : Rn 7→ R1×n

Derivative of f : Rn 7→ Rm is matrix-valued: Jf : Rn 7→ Rm×n

Derivative of Jacobian?

. . . Let’s focus on real-valued functions to avoid the third dimension

Expectation: first derivative is vector → second is matrix

First derivative = gradient: ∇f : Rn 7→ R1×n

Second derivative = derivative of transposed gradient: d
dx (∇f )′
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4. Multivariate Calculus: Differentiation
Second Derivative: Hessian

If ∂f
∂xi

is differentiable at x0, the (i , j)-second order partial derivative
at x0 is

fi ,j(x0) =
∂fi
∂xj

(x0) =
∂2f

∂xi∂xj
(x0)

Definition (Hessian or Hessian Matrix)

Let X ⊆ Rn be an open set and f : X 7→ R. Further, let x0 ∈ X , and suppose
that f is differentiable at x0 and that all second order partial derivatives of f at x0
exist. Then, the Hessian of f at x0 is the matrix

Hf (x0) =


∇f1(x0)
∇f2(x0)

...
∇fn(x0)

 =


f1,1(x0) f1,2(x0) · · · f1,n(x0)
f2,1(x0) f2,2(x0) · · · f2,n(x0)

...
...

. . .
...

fn,1(x0) fn,2(x0) · · · fn,n(x0)


If (∇f )′ is differentiable, we already know that d

dx (∇f )′ = Hf !
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4. Multivariate Calculus: Differentiation
Higher Order Partial Derivatives

Let C k(X ) = C k(X ,R) (codomain R as implicit second argument):

C k(X ) = {f : X 7→ R : All k-th order part. deriv’s are continuous}

Theorem (Schwarz’s Theorem/Young’s Theorem)

Let X ⊆ Rn be an open set and f : Rn 7→ R. If f ∈ C k(X ), then the order
in which derivatives up to order k are taken can be permuted.

If f ∈ C 2(X ), then
∇f ∈ C 1(X ) ⇒ differentiable, and

derivative = Hessian is symmetric!

Corollary (Hessian and Gradient)

Let X ⊆ Rn and f ∈ C 2(X ). Then, the Hessian is symmetric and
corresponds to the Jacobian of the transposed gradient: Hf = J(∇f )′ .
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4. Multivariate Calculus: Differentiation
Computing the Second Derivative: An Example

Let f (x1, x2) = x1x
2
2 . Is f twice differentiable? If so, compute the second

derivative!
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4. Multivariate Calculus: Differentiation
Taylor’s Theorem for Multivariate Functions

Theorem (Second Order Multivariate Taylor Approximation)

Let X ⊆ Rn be an open set and consider f ∈ C 2(X ). Let x0 ∈ X . Then,
the second order Taylor approximation to f at x0 ∈ X is

T2,x0(x) = f (x0) +∇f (x0) · (x − x0) +
1

2
(x − x0)′ · Hf (x0) · (x − x0).

The error ε2,x0(x) = f (x)− T2,x0(x) approaches 0 at a faster rate than

‖x − x0‖2, i.e. lim‖h‖→0
ε2,x0 (x+h)

‖h‖2 = 0.

Zero and first order approximation in analogy

Error formula for first order: there exists λ ∈ (0, 1) so that

ε1,x0(x0 + h) =
1

2
h′ · Hf (x0 + λh) · h

Taylor expansion like before
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4. Multivariate Calculus: Differentiation
Total Derivative: Directional Derivative for Economics

Directional derivative of f at x0 in direction z 6= 0 (Chain Rule):

d

dt
f (x0 + tz)

∣∣
t=0

= ∇f (x0) · z =
n∑

i=1

∂f

∂xi
(x0) · zi

Notation: z = (dx1, . . . , dxn) as vector of relative variation in the
arguments; df as resulting relative induced marginal change

df =
n∑

i=1

∂f

∂xi
dxi ; df (x0) =

n∑
i=1

∂f

∂xi
(x0)dxi

In economics:

variation in fixed ratios/specific directions → comparative statics

Consideration is relative: fix one reference variable j with dxj = 1

Concerns marginal variation; do not consider fixed, non-zero changes!
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4. Multivariate Calculus: Differentiation
Second Derivative and Convexity

For X ⊆ R, f ∈ C 2(X ) (proof in script):
1 f is convex if and only if ∀x ∈ X : f ′′(x) ≥ 0 (equivalent condition)

2 If ∀x ∈ X : f ′′(x) > 0, then f is strictly convex (sufficient condition)

Recall: we can study g : R 7→ R, t 7→ f (x + tz) for x , z ∈ Rn, z 6= 0
If f ∈ C 2(X ) then especially g ∈ C 2(R) for fixed x , z

Second derivative (chain rule; cf. directional derivative):

g ′′(t) = z ′Hf (x + tz)z

This implies:
1 ∀y ∈ X : (Hf (y) pos. semi-definite)⇔ f convex (proof in script)

2 ∀y ∈ X : (Hf (y) pos. definite)⇒ f strictly convex

Intuition: definiteness of the symmetric Hessian =̂ sign
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4. Multivariate Calculus: Differentiation
Differentiation: Final Remarks

A lot of notation and definitions. . .

Key take-aways:
1 Gradients and Jacobians are the derivatives of multivariate functions

. . . if the components (partial derivatives) are continuous; i.e. almost
always

Intuition: summary of variation in fundamental directions of domain

2 Taylor approximations give “good” polynomial approximations “close
to” the approximation point

3 Second derivatives of real-valued multivariate functions (“Hessian”)
can be obtained from differentiating the (transposed) gradient

4 The definiteness of the Hessian determines convexity/concavity
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5. Multivariate Calculus: Integration
Introduction 1/2

f is the instantaneous change of its accumulation

→ If the integral measures accumulation, the function itself should be
the integral’s derivative!

Idea: obtain integral operator by inverting the derivative operator

d

dx
: D1(X ) 7→ FX , f 7→

df

dx

Issue: recall that inversion requires injectivity (“one-to-one”)

f (x) = 2x + 3 vs. f (x) = 2x

Problem: constants cancel out when taking the derivative

Derivative is unique up to the constant!
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5. Multivariate Calculus: Integration
Introduction 2/2

Definition (Infimum and Supremum of a Set)

Let X ⊆ R. Then, the infimum inf(X ) of X is the largest value smaller
than any element of X , i.e. inf(X ) = max{a ∈ R : ∀x ∈ X : x ≥ a}, and
the supremum sup(X ) of X is the smallest value larger than any element
of X , i.e. sup(X ) = min{b ∈ R : ∀x ∈ X : x ≤ b}.

⇒ Generalized Maximum/Minimum
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5. Multivariate Calculus: Integration
Indefinite Integrals

Restrict attention to univariate, real-valued f : X 7→ R

We can’t invert d
dx , let’s do the next best thing:∫

: FX 7→ P(D1(X )), f 7→ {F̃ : X 7→ R :
dF̃

dx
= f }

Correspondence: set-valued mapping, not a function!

We write
∫
f = {F̃ : X 7→ R : dF̃

dx = f } (pre-image of f under d
dx )

Any F̃ ∈
∫
f has the form F̃ (x) = F (x) + C for a C ∈ R

F has no constant, i.e. F (minX ) = 0 or limx→inf X F (x) = 0

F : accumulation at the left tail of the domain

Notation: F̃ (x) =
∫
f (x)dx = F (x) + C
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5. Multivariate Calculus: Integration
Indefinite Integrals: Some Rules

Theorem (Rules for Indefinite Integrals)

Let f , g be two integrable functions and let a, b ∈ R be constants, n ∈ N. Then∫
(af (x) + g(x))dx = a

∫
f (x)dx +

∫
g(x)dx ,∫

xndx = xn+1

n+1 + C if n 6= −1 and
∫

1
x dx = ln(x) + C ,∫

exdx = ex + C and
∫
ef (x)f ′(x)dx = ef (x) + C ,∫

(f (x))nf ′(x)dx = 1
n+1 (f (x))n+1 + C if n 6= −1 and

∫ f (x)
f ′(x)dx =

ln(f (x)) + C .

Theorem (Integration by parts)

Let u, v be two differentiable functions. Then,∫
u(x)v ′(x)dx = u(x)v(x)−

∫
u′(x)v(x)dx .

Martin Reinhard Ch. 3: Multivariate Calculus August 29/30, 2022 50 / 55



5. Multivariate Calculus: Integration
Definite Integrals

Accumulation is unique up to initial level C : For any
F̃ = F + C ∈

∫
f and any x , y ∈ X : F̃ (y)− F̃ (x) = F (y)− F (x)

→ Uniquely defined Definite Integral:∫ y

x
f (t)dt = F̃ (y)− F̃ (x), where F̃ (x) ∈ d

dx

−1
[{f }]

Zero initial accumulation function if X is an interval:

F (x) =

∫ x

a
f (t)dt where a = inf X
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5. Multivariate Calculus: Integration
Conclusion Univariate Integration

Theorem (Fundamental Theorem of Calculus)

Let X be an interval in R with a = inf(X ) and f : X 7→ R. Suppose that f
is integrable, and define F := X 7→ R, x 7→

∫ x
a f (t)dt. Then, F is

differentiable, and

∀x ∈ X : F ′(x) =
dF

dx
(x) = f (x).

Proof (see script) is stunningly easy relative to the theorem’s
importance!

Take-away

Fix initial accumulation to define a unique integral

This definite integral is inversely related to the derivative
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5. Multivariate Calculus: Integration
Multivariate Integration: Roadmap

We have formally discussed univariate integration

As with derivatives: if the multivariate integral exists, we can reduce
its computation to univariate integrals!

No formal details, rather only the “how-to”

Martin Reinhard Ch. 3: Multivariate Calculus August 29/30, 2022 53 / 55



5. Multivariate Calculus: Integration
Multivariate Integration 1/2

Theorem (Fubini’s theorem)

Let X and Y be two intervals in R, let f : X × Y → R and suppose that f
is continuous. Then, for any I = Ix × Iy ⊆ X × Y with intervals Ix ⊆ X
and Iy ⊆ Y , ∫

I
f (x , y)d(x , y) =

∫
Ix

(∫
Iy

f (x , y)dy

)
dx ,

and all the integrals on the right-hand side are well-defined.

General Fubini: for continuous f : X 7→ R, X ⊆ Rn∫
I
f (x1, . . . , xn)d(x1, . . . , xn) =

∫
I1

(
· · ·
(∫

In

f (x1, . . . , xn)dxn

)
· · ·
)
dx1.
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5. Multivariate Calculus: Integration
Multivariate Integration 2/2

Useful Corollary of Fubini:

Corollary (Integration of Multiplicatively Separable Functions)

Let Xf ∈ Rn,Xb ∈ Rm, f : Xf → R, g : Xb → R continuous functions.
Then, for any intervals A ⊆ Xf , B ⊆ Xg ,∫

A×B
f (x)g(y)d(x , y) =

(∫
A
f (x)dx

)(∫
B
g(y)dy

)
.

Martin Reinhard Ch. 3: Multivariate Calculus August 29/30, 2022 55 / 55


	Introduction
	Basics: Invertability and Convexity
	Invertability
	Convexity

	Multivariate Calculus
	Multivariate Calculus: Differentiation
	Multivariate Calculus: Integration

