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1. Introduction

Motivation

This chapter discusses
@ A formal introduction to multi-dimensional functions
e Key function properties: invertability, convexity (and concavity)

e Multivariate differentiation (main focus)
o Formal definition and derivation

e Application

o Multivariate integration: concept and key theorems
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1. Introduction

Motivation

Thus far: Linear Algebra (linear operations and equation systems)

Now: analysis of functions, study of (small) variations

@ Here: generalizing the derivative to functions  : R” — R"™

Why?: Optimization problems with many variables (goods,
production inputs, statistical parameters)

Many struggles in the 1st PhD semester were encountered because of
issues with understanding derivatives. ..
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1. Introduction

Key Concepts

@ Function f : X — Y with domain X, codomain Y and image
im(f) = f[X]

o X C R: univariate function
e X C R": multivariate function
o Y C R: real-valued function
o Y C RR™: vector-valued function
o How to call f : R — R??
o Examples:
o Multivariate, real-valued function: x — ||x||, x = x’Ax, (x,y) — x-y
o Multivariate, vector-valued function: x — Ax

o Graph:

G(f)={(x,y) e Xx Y :y=1f(x)} ={(x,f(x)) : x € X}
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2. Basics: Invertability and Convexity

Invertability of Functions

Inverse function =1 of f: f(f~1(y)) =y and f~1(f(x)) = x
o More formally: f~Yof = ldx, fof1 = Idy
e Ild7 : Z+ Z,z+— z is the identity function

o Consistent with our usual notion of inversion “x - x~! = 1"

o Ch. 0: For X, Y C R, we can invert f : X — Y if and only if for
every y € Y we have exactly one x(y) € X so that f(x(y)) =y

@ The two conditions transfer to arbitrary X, Y: forevery y € Y, ...
e at least one x maps to y (“surjectivity”): Ix € X : f(x) =y

e at most one x maps to y (“injectivity”): x; # x2 = f(x1) # f(x)

Easy to show: f invertible < f bijective (= injective + surjective)
o Idea: f~! maps y to the unique x(y) that maps to y under f

Martin Reinhard Ch. 3: Multivariate Calculus August 29/30, 2022 4/55



2. Basics: Invertability and Convexity

Convexity (and Concavity) of General Functions

Definition (Convex and Concave Real Valued Function)

Let X CR" be a convex set. A function f : X — R is convex if for any x,y € X
and X\ € [0,1],
F(Ax + (1= XA)y) < M(x) + (1= Nf(y)

Moreover, if for any x,y € X such that y # x and X € (0,1),
F(Ax+ (1= XA)y) < AM(x)+ (1= X)f(y)

we say that f is strictly convex. Moreover, we say that f is (strictly) concave if
—f is (strictly) convex.

Alternative characterization of concavity (line 1) and strict concavity (line 2)
FOX+ (1= Ny) > M)+ (1 =Nf(y) Vx,y € X¥Ae0,1],

fF(Ax+(1=XN)y) > M(x)+(1-N)f(y)  Vx,y € X so that x # y and VA € (0, 1).
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2. Basics: Invertability and Convexity

Convexity: Intuition

@ In what follows: focus on convexity
@ Recall: Ax+(1—X)y (X €[0,1]) is a convex combination of x and y
e Convexity of functions = statement about convex combinations across

domain and codomain of the function!
o f(Ax+ (1 — A)y) must always be well-defined — convex domain

o G(f) CR? (i.e. f univariate, real-valued function):
o (1 —X)x+ Ay, A € [0,1] defines an interval between x and y

e A = 0: start from x

@ increasing A moves away from x towards y

o (1= A)f(x)+ Af(y) is the line piece connecting f(x) and f(y)

o Let’s draw a convex and a concave function
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2. Basics: Invertability and Convexity

Convexity of Bivariate Functions
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o f: X—R XCR? e Gives univariate function

e For any fixed x,y € X, t f(x + t(y = x))

(1-=XMx+ Ay =x+ Ay —x) = convex?
expands in a single direction
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2. Basics: Invertability and Convexity

Convexity of Multivariate Functions

@ Also for X C R": fixing x,y € X reduces convexity to one dimension
— f is convex if and only if any univariate reduction is convex

o After picking x € X, choosing y € X arbitrarily is equivalent to
choosing z € R" with x + z € X arbitrarily (z = y — x). This gives:

Theorem (Graphical Characterization of Convexity)

Let X CR" be a convex set and f : X — R. Then, f is (strictly) convex
if and only if Vx € X and Vz € R"\{0} with x + z € X, the function
g :R— R, t— f(x+ tz) is (strictly) convex.

Let’s use this theorem (“strictly” variant) to give an example of a
convexity proof.
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2. Basics: Invertability and Convexity

Convexity of Multivariate Functions: A Corollary

Corollary (Disproving Convexity)

Let X C R" be a convex set and f : X — R. Then, if there exist xo € X
andi€{l,...,n} such that g : R — R, t — f(t — x+t-¢) is not
(strictly) convex, then f is not (strictly) convex.

@ Necessary condition of convexity: convex in every fundamental
direction of R"

@ Consider f : R — R" with

f(x)=h(x1,. ., Xn—1) - V/*n

where h is an arbitrarily complex, unspecified function. Is f convex?
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2. Basics: Invertability and Convexity

Weak Convexity

@ Optimization: convexity immensely helpful, but restrictive concept

e Can we weaken the concept and preserve (most of!) the desirable
properties? Yes!

@ Level sets in the domain of f:

Definition (Lower and Upper Level Set of a Function)

Let X C R" be a convex set and f : X — R be a real-valued function.
Then, for c € R, the sets

Ly ={xeX:f(x)<c} and L ={xeX:f(x)>c}

are called the lower-level and upper level set of f at c, respectively.
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2. Basics: Invertability and Convexity

Level Sets of Convex and Concave Functions

== levelc --=- levelc
— lower level set —— upper level set

Quasi-convex (-concave) function: any lower (upper) level set convex
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2. Basics: Invertability and Convexity

Level Sets of Quasi-Convex and -Concave Functions

Linear Function Monotonic Function "Camel Back" Function

Which functions are quasi-convex/quasi-concave? Which are quasi-linear?
@ Quasi-linear: both quasi-convex and quasi-concave
e Intuition: only linear functions are both convex and concave
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2. Basics: Invertability and Convexity
Quasi-Convexity: Workable Definitions

Theorem (Quasiconvexity, Quasiconcavity)

Let X C R" be a convex set. A real-valued function f : X — R is
quasiconvex if and only if

Vx,y € XYA € [0,1] : F(Ax 4 (1 — N)y) < max{f(x), f(y)}

Conversely, f is quasiconcave if and only if

Vx,y € XVYA € [0,1] : (Ax + (1 — N)y) > min{f(x), f(y)}

Analogous definition: Strict Quasiconvexity (line 1), Strict Quasiconcavity
(line 2)

Vx,y € X such that x # y and VA € (0,1) : f(Ax + (1 — N)y) < max{f(x),f(y)}

Vx,y € X such that x # y and VA € (0,1) : f(Ax + (1 — N)y) > min{f(x), f(y)}
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3. Multivariate Calculus

What and Why?

e What is (multivariate) Calculus? Defininition Wikipedia (summarized)

e “Mathematical study of continuous change”

o Differential calculus: instantaneous/marginal rates of change and
slopes of curves

o Integral calculus: accumulation of quantities, areas under and between
curves

e Fundamental theorem of calculus: integration and differentiation are
inverse operations (intuition?)

@ Why care?
e Cannot optimize without derivatives

e Economics: marginal utility, accumulations across households
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3. Multivariate Calculus

Differentiation: Review Univariate, Real-Valued Functions

@ As before: start from what we know and generalize
o If X C R, what is “the slope” of f : X — R?

@ Relative change of f(x) given variation in x at xp € X:

Ai(;() . f(xi:)f;éxo) _ f(xo—i—hlz— f(xo), h=x—x €R

e Marginal/instantaneous rate of change: limit h — 0 (existence?)
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3. Multivariate Calculus

Differentiation: Review Univariate, Real-Valued Functions

Definition (Univariate Real-Valued Function: Differentiability and
Derivative)

Let X C R and consider the function f : X — R. Let xo € X. If

fim f(xo + h) — f(x0)

h—0 h

exists, f is said to be differentiable at xg, and we call this limit the
derivative of f at xp, denoted by f'(xo). If for all xo € X, f is
differentiable at xg, f is said to be differentiable over X or differentiable.
Then, the function f' : X — R, x — f'(x) is called the derivative of f.

e Differentiability: point-specific vs. domain (e.g. | -|)

@ Derivative f' = function, derivative at xp, f'(x0) = real number!
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3. Multivariate Calculus

Differentiation: Review Univariate, Real-Valued Functions

Definition (Univariate Real-Valued Functions: Differential Operator)

Let X C R, define D*(X,R) = {f : X + R : f is differentiable over X},
and let Fx := {f : X — R}. Then, the differential operator is defined as

the function J

a o
where f' denotes the derivative of f € D(X,R).

DY(X,R) — Fx, f s f

(Differential) Operator: function between function spaces
fl — d

L (f) is a specific value in the codomain of - (just like f'(x))

Formally precise f'(x) = [i{(f)] (x) vs. convention: f'(x) = dTi(X)

@ Please don't write %

Martin Reinhard
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3. Multivariate Calculus

Differentiation: Review Univariate, Real-Valued Functions

@ Levels of objects in differentiation: operator, function, value

Let’s practice this distinction with some common rules

Basis operations in function spaces (X: domain of function(s))
o “+": f 4 gissuch that Vx € X : (f + g)(x) = f(x) + g(x)
e " Af issuch that Vx € X : (A\f)(x) = A f(x)

Function product (fg)(x) = f(x) - g(x)

quotient in analogy if Vx € X : g(x) # 0
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3. Multivariate Calculus

Differentiation: Review Univariate, Real-Valued Functions

Theorem (Rules for Univariate Derivatives)
Let X CR, f,g€ D}(X,R) and \, u € R. Then,

(i) (Linearity) \f + pg is differentiable and L (\f + ug) = A9 + ,udx,
(i) (Product Rule) The product fg is d/fferent/able and
s)=4% g+ &
(iii) (Quotient Rule) IfVx € X, g(x) # 0, the quotient f /g is
differentiable and d%(f/g) _ et

g8
(iv) (Chain Rule) if g o f exists, the function is differentiable and

£gof)=(Fof) &

Script: rules for specific values and differentiability at xp € X
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3. Multivariate Calculus

Differentiation: Properties to Generalize

@ Now: local behavior of multivariate functions we cannot sketch?

o For univariate, real-valued functions, differentiability of f at xg € X
implies. ..

© continuity at xg

@ Existence of a good linear approximation to f around xg
and differentiability of f on (a, b) C R implies that

© the sign of ' is determines if the function is increasing, decreasing, or
constant
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3. Multivariate Calculus

Differentiation: “Good Linear Approximation”?

Y f(xl) @ Taylor = key take-away from this class!

@ First order Taylor approximation to f at xg:
T1,x0(x)

T1.%(x) = f(x0) + f'(x0)(x — x0)

[

X1 Xo X2 X

o Error: €1 ,,(x) := f(x) — T1x(x) (formula:
next slide)

@ "“Good" approximation: limy_x, il_(ig = 0 (intuition?; caution?)

@ Taylor expansion of first order: decomposition of f into linear and
(non-linear) remainder term, i.e.

F(x) = Tix0(X) + €1,50(x)

@ Expansion includes the error, approximation does not
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3. Multivariate Calculus
Taylor of Generalized Order: Definition

Theorem (Taylor Expansion for Univariate Functions)

Let X CR and f € DY(X,R) where d € NU {oo}. For N € NU {o0},
N < k, the Taylor expansion of order N for f at xop € X is

)

(n)
P00 (1 — s + pa(x),

N
f(x) = Thx(X) +enx(x) = f(xo) + Z n

where ey x,(x) is the approximation error of Ty x, for f at x € X. Then,
the approximation quality satisfies limp_.o0 en,x, (X0 + h)/ hN = 0. Further,
if f is N + 1 times differentiable, there exists a A € (0,1) such that

f(N+1)(X0 + Ah) N+

Eno(X0 + h) = (N +1)!

e Facultyof neN: nl=1-2-...-(n—1)-n
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3. Multivariate Calculus

Taylor of Generalized Order: Comments

e Approximation quality: limj,_,oen(xo + h)/hN =0
o The larger N, the “faster” hN — 0 (think 0.1" for increasing n)

o Larger N increase order of approximation quality

e Script gives proof for N = 1,2, general intuition is similar

@ Mean Value Theorem (corollary of Taylor's theorem): for any
differentiable f : X — R (X C R), for any x1, xo € X such that
xp > x1, there exists x* € (x1, x2) such that

f/(X*) _ f(X2) — f(Xl).
X2 — X1
o Useful to check if critical values (f'(x) = 0) exist

o Proof: see exercises
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4. Multivariate Calculus: Differentiation

Differentiation: Multivariate Real-Valued Functions

e Roadmap for multivariate derivatives (f : X — Y, esp. X CRR")
@ How to formally think about a multivariate derivative?
@ derivative should describe expansion in any possible direction

e X C R: variation on an infinitely small intervall/ball around xo
@ Does an intuitively plausible candidate meet the formal definition?
@ Recall: convergence
e univariate: limy_,o f(x) = c: |f(x) —c| < e for [x = 0] =|x| < ¢
o multivariate: limy_o f(x) = c: |f(x) —c| < e for ||x]| < §

— tells us how to think about “limp_" more generally!
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4. Multivariate Calculus: Differentiation

The Derivative — an Equivalent Characterization

@ when n =1, d* is the derivative of f at xq if

4" — lim f(xo + h) — f(x0)
h—0 h

@ Problem: if n > 1, the denominator has a vector; not defined

e But: expression is equivalent to (let's see why)

|f(x0 + h) — f(x0) — d* - h| _

li 0
h20 [El
where || - || is a norm on R; and norms generalize to R"!
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4. Multivariate Calculus: Differentiation

Definition (Multivariate Derivative of Real-valued Functions)

Let X CR" and f : X — R. Further, let xo € int(X) (interior point).
Then, f is differentiable at xo if there exists d* € R™" such that

i |f(x0 + h) — f(x0) — d*hl _

0.
e Il

Then, we call d* the derivative of f at xo, denoted 9 (xo) or D¢(xo). If f

is differentiable at any xo € X, we say that f is differentiable, and we call

9 X R,x = %(x) the derivative of f.

@ Interior point: able to consider balls around xg on which f is defined
® Most textbooks use Df(xp) rather than % (xp), is the same thing!

@ Derivative operator as before: mapping between function spaces
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4. Multivariate Calculus: Differentiation

Definition (Multivariate Derivative of Vector-valued Functions)

Let X CR" and f : X — R™. Further, let xo € int(X) (interior point).
Denote || - || as a norm of R¥, k € {n, m}. Then, f is differentiable at xo
if there exists a matrix D* € R™*" such that

im  mlf (o +h) = f(xo) = D*hl| _
allh]|—=0 nll Al

0,

Then, we call D* the derivative of f at xp, denoted %(xo) or Df(xo). If f
is differentiable at any xo € X, we say that f is differentiable, and we call
9 - X — R™" x s 9(x) the derivative of f.

@ Numerator norm: codomain, denominator norm: domain
e Derivative as matrix: D*h must be vector of same length as f(x)

@ Actually: encompasses the previous definition (m = 1)
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4. Multivariate Calculus: Differentiation

Generalizing the Derivative — Status Quo

@ Roadmap for multivariate derivatives
v" How to formally think about a multivariate derivative?

@ Does an intuitively plausible candidate meet the formal definition?
o Idea:

e Forn=1, (xo) is scalar and characterizes the instantaneous change
along the one axis (i.e., fundamental direction) of R

o For n>1, %(xo) is a vector of length n — collection of instantaneous
changes anng all n individual axes of R"?

@ Tool: directional derivative: allows to study the behavior of f around
Xo in a single direction z # 0
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4. Multivariate Calculus: Differentiation

Partial Derivatives, Gradient

o Directional derivative: let f, ., : R — R, t — f(xo + tz) for z # 0

o N o Ce df;
o Univariate directional derivative of f in direction z at xp: —3>%(0)

o Evaluated at t = 0: focus on local behavior around xg = xg+0- z
e Partial derivative of f at xg with respect to x;:

of | df
8Xj(xo)_ dt

d
(0) = Ef(xo + tej)|t:0

E[f(X()’l, <oy X0, j—1,%0,j T £, X011, - - XO=”)]|t:O

e Variation along j-th axis around x (“holding x;, | # j constant”)
o Also: j-th partial derivative (of f at xp); sometimes denoted f(xp)

o Gradient: ordered collection of partial derivatives (row vector!)

Vf(Xo) = (aajl(XO), aa);(XO), Ceey 88);(X0)>
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4. Multivariate Calculus: Differentiation

Partial Derivatives and Gradient: Summary of Concepts

o Partial differentiability

o f: X — R partially differentiable (p.d.) at xo: all partial derivatives
%(xo) and therefore the gradient at xo € X, Vf(x), exists

e “point-specific to general”: f: X +— R p.d.: f p.d. at any xg € X

o Set of p.d. functions from X to R: D}(X,R) = {f : X — R: fis p.d.}
@ Recall: univariate derivative is a real-valued function

° é%f,- X =R, xp— g—)';(xo) is a real-valued function

o Vf: X — RY™" x5 Vf(xo) is a (real row-)vector-valued function
@ associated operators: mappings between function spaces

o g i Dy(X.R) = Fx,f e fj= 5L

o V:DIX,R)— F ", f = VF
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4. Multivariate Calculus: Differentiation

Partial Derivatives and Gradient: Some Examples

Consider the following functions R? — R:
o fi(x1,x) = x1 + x
o f2(x1,x2) = x1%0
o 3(x1,x) = x1x5 + cos(xi)

Consider an arbitrary point xg = x € R. Compute the gradients of f1, f2
and 3 at xp!

How do the partial derivatives depend on the location x?

Now for the actual derivative: can we use the gradient?
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4. Multivariate Calculus: Differentiation
Generalizing the Derivative — the Last Step

Theorem (The Gradient and the Derivative)

Let X CR" and f : X — R such that f is differentiable at xy € int(X).
Then, all partial derivatives of f at xy exist, and g—i(xo) = Vf(x).

@ Verbally: “derivative exists = derivative = gradient”; what about <7

Theorem (Partial Differentiablility and Differentiability)

Let X CR", f: X — R and xg € int(X). If all the partial derivatives of f
at xg exist and are continuous, then f is differentiable.

@ Set of continuously differentiable functions:

CY{X,R) = {f X —=R: (Vj e{1,...,n}: gf is continuous)}
Xj
o f € CYX,R) = f is differentiable
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4. Multivariate Calculus: Differentiation

Generalizing the Derivative — Summary and Practice

o Partial differentiability and differentiability
o Generally, if f is differentiable, the derivative is equal to the gradient

= If the gradient does not exist, f is not differentiable

o Theoretically: may encounter weird D! but not C* functions; issue not
too relevant in (economic) practice

@ In applications: taking the derivative of f : X — R, X C R"
© Compute the gradient V£ (if it exists)

@ Are all partial derivatives continuous? If so: Vf is the derivative!

@ What about f : X — R™?
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4. Multivariate Calculus: Differentiation

Vector-valued Functions 1/3

@ Consider X CR", f: X — RM™

@ f is ordered collection of real-valued functions which we already know
how to handle:

1 f1(x)
f2 fz(x)
f=1 .| sothat Vx € X : f(x) = _
fm m(x)
where for any i € {1,...,m}, f': X — R (example?)
@ |dea: ordered collection of derivatives, i.e.
V&
df | VF?
dx |
VvFfm
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4. Multivariate Calculus: Differentiation

Vector-valued Functions 2/3

Definition (Jacobian)

LetnymeR", X CR" and f : X — R™ and for i € {1,...,m}, let
fi:R" — R such that f = (fl, ..., M. Let xg € X. Then, if at xp,
Vie{1,...,m}, f' is partially differentiable with respect to any x;,

JjeA{l,...,n}, we call

Vf(xo) fi(xo) fi(x) ... fy(x)

V2(x0) ff(x) fF(x) ... fi(x)
Jf(XO) = . = B B .

Vf™(xo) f"(x0) £"(x) ... f"(x0)

the Jacobian of f at xy. If the above holds at any xp € X, we call the
mapping Jr : R" — R™™ x5 — Jr(xo) the Jacobian of f.

o All partial derivative of any f must exist (we write f € DA (X,R"))
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4. Multivariate Calculus: Differentiation

Vector-valued Functions 3/3

@ Jacobian collects expansion in all fundamental directions of all
sub-functions f', i € {1,..., m}. — Jacobian = derivative?

Theorem (The Jacobian and the Derivative)

Let X CR", f: X —R™and fl,... f™: X — R such that
f=(f',...,fm). Further, let xo € int(X) (interior point), and suppose
that f is differentiable at xo. Then, for any f', i € {1,..., m}, all partial
derivatives of f' at xq exist, and %(xo) = Jr(x0)-

@ As before: derivative exists if all partial deriv's are continuous
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4. Multivariate Calculus: Differentiation

A step back

@ Why did our intuitive conjecture correspond to the derivative?

@ Recall lecture 1. ..
o Vector spaces: generalize key intuitions of lower-dimensional spaces

e Minimal structure (addition and multiplication by a constant). ..
e ...and an axiomatic way of thinking about distances

o ...was all we needed to generalize a complex and important concept
such as function differentiation

Martin Reinhard Ch. 3: Multivariate Calculus August 29/30, 2022 37/55



4. Multivariate Calculus: Differentiation

Multivariate Differentiation Rules

Theorem (Rules for Multivariate Derivatives)

Let X CR", f,g: X+~ R™and h: R™ — RK. Suppose that f,g and h
are differentiable functions. Then,

(i) (Linearity) For all \ ,u € R, X\f + ug is differentiable and
d(Af+pg) _ )\df

dx /.L
(it) (Product Rule) f' - g is differentiable and (f g _ f. ﬁ +g-

(iii) (Chain Rule) h o f is differentiable and d(hof)

df
(dx f) dx -

@ Product rule: f’, g’ = transpose, not derivative; Quotient rule?

o Careful about order (matrix products are not commutative)

e CR variant: for f(g(x)) = f(y(x),x) (L: precise; R: convention):

dfog_@fogﬂ+8fog vs df _ ofdy Of
dx Oy dx Ox ©dx  dydx  Ox
Martin Reinhard
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4. Multivariate Calculus: Differentiation

Second Derivative

@ Thus far: first derivative operator (-)’ generalized to V/J

@ In univariate, real-valued case: f” = (f')’, we can generalize this logic

@ Recall: derivative increases order in codomain
o Derivative of f : R” — R is vector-valued: V£ : R" — R1%7

o Derivative of f : R" — R™ is matrix-valued: Jr : R" — R™X"
o Derivative of Jacobian?
... Let's focus on real-valued functions to avoid the third dimension

@ Expectation: first derivative is vector — second is matrix
o First derivative = gradient: Vf : R” — R*"

o Second derivative = derivative of transposed gradient: -2 (Vf)’
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4. Multivariate Calculus: Differentiation

Second Derivative: Hessian

o If g—; is differentiable at xp, the (7, j)-second order partial derivative
at xp is R
of; o°f
ﬁ . = — fry
j(x0) o, (o) = 5. o (x0)

Definition (Hessian or Hessian Matrix)

Let X CRR" be an open set and f : X — R. Further, let x € X, and suppose
that f is differentiable at xo and that all second order partial derivatives of f at xg
exist. Then, the Hessian of f at xq is the matrix

V;l(Xo) ?,1(X0) ?,2(X0) a ::l,n(XO)

V(X 2,1(X 22(x0) -0 fan(X

He(x0) = ( % =\ ( o) % ( ) . ’ ( 2
Vfa(x0) fai(x0) fo2(x0) -+ fan(xo)

o If (Vf)' is differentiable, we already know that £ (V) = Hy!
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4. Multivariate Calculus: Differentiation

Higher Order Partial Derivatives
o Let CX(X) = CK(X,R) (codomain R as implicit second argument):
CK(X) = {f : X = R : All k-th order part. deriv’s are continuous}

Theorem (Schwarz's Theorem/Young's Theorem)

Let X C R" be an open set and f : R" — R. If f € C*(X), then the order
in which derivatives up to order k are taken can be permuted.

o If f € C3(X), then
o Vf € CYX) = differentiable, and

e derivative = Hessian is symmetric!

Corollary (Hessian and Gradient)

Let X CR" and f € C?(X). Then, the Hessian is symmetric and
corresponds to the Jacobian of the transposed gradient: Hr = Jiyry.

Martin Reinhard Ch. 3: Multivariate Calculus August 29/30, 2022



4. Multivariate Calculus: Differentiation

Computing the Second Derivative: An Example

Let f(x1,x) = x1x22. Is f twice differentiable? If so, compute the second
derivative!
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4. Multivariate Calculus: Differentiation

Taylor's Theorem for Multivariate Functions

Theorem (Second Order Multivariate Taylor Approximation)

Let X C R" be an open set and consider f € C?(X). Let xo € X. Then,
the second order Taylor approximation to f at xog € X is

T2,x(x) = f(x0) + Vf(x0) - (x — x0) + %(X —x0) - Hr(x0) - (x — X0)-

The error €3 ,(x) = f(x) — T2, (x) approaches 0 at a faster rate than

5 . . 2, (X+h)
, 1.€. I|mHh||_>0 A2 =0.

llx — xol

@ Zero and first order approximation in analogy

@ Error formula for first order: there exists A € (0, 1) so that
1
€1x(x0 +h) = §h' - He(xo + Ah) - h

@ Taylor expansion like before
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4. Multivariate Calculus: Differentiation

Total Derivative: Directional Derivative for Economics

o Directional derivative of f at xp in direction z # 0 (Chain Rule):

d ~ Of
Ef(xo—i—tz)‘t o= Vf(xo) z= 2 a—Xi(xo) z;
e Notation: z = (dxi, ..., dxp) as vector of relative variation in the

arguments; df as resulting relative induced marginal change

= Of " Of
df = £ 87)(idx,', df(Xo) = ; af)q(X())dX,'

@ In economics:
e variation in fixed ratios/specific directions — comparative statics

o Consideration is relative: fix one reference variable j with dx; =1

e Concerns marginal variation; do not consider fixed, non-zero changes!
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4. Multivariate Calculus: Differentiation

Second Derivative and Convexity

e For X CR, f € C3(X) (proof in script):
@ f is convex if and only if ¥x € X : f”/(x) > 0 (equivalent condition)

@ If Vx € X : f’(x) > 0, then f is strictly convex (sufficient condition)

@ Recall: we can study g : R+ R, ¢+ f(x+ tz) for x,z€ R", z # 0
o If f € C?(X) then especially g € C?(R) for fixed x, z

o Second derivative (chain rule; cf. directional derivative):
g"(t) = Z'He(x + tz)z

e This implies:
@ Vy € X : (He(y) pos. semi-definite) < f convex (proof in script)
@ Vy € X : (He(y) pos. definite) = f strictly convex

o Intuition: definiteness of the symmetric Hessian = sign
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4. Multivariate Calculus: Differentiation

Differentiation: Final Remarks

@ A lot of notation and definitions. . .

o Key take-aways:
@ Gradients and Jacobians are the derivatives of multivariate functions

e ...if the components (partial derivatives) are continuous; i.e. almost
always

@ Intuition: summary of variation in fundamental directions of domain

@ Taylor approximations give “good” polynomial approximations “close
to” the approximation point

© Second derivatives of real-valued multivariate functions (“Hessian™)
can be obtained from differentiating the (transposed) gradient

@ The definiteness of the Hessian determines convexity/concavity
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5. Multivariate Calculus: Integration

Introduction 1/2

@ f is the instantaneous change of its accumulation

— If the integral measures accumulation, the function itself should be
the integral's derivative!

@ ldea: obtain integral operator by inverting the derivative operator

d df

@ Issue: recall that inversion requires injectivity (“one-to-one”)
o f(x) =2x+43vs. f(x)=2x
e Problem: constants cancel out when taking the derivative

e Derivative is unique up to the constant!
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5. Multivariate Calculus: Integration
Introduction 2/2

Definition (Infimum and Supremum of a Set)

Let X C R. Then, the infimum inf(X) of X is the largest value smaller
than any element of X, i.e. inf(X) = max{ae R:Vx e X : x > a}, and
the supremum sup(X) of X is the smallest value larger than any element
of X, i.e. sup(X) =min{beR:Vx e X:x < b}.

= Generalized Maximum/Minimum
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5. Multivariate Calculus: Integration

Indefinite Integrals

@ Restrict attention to univariate, real-valued f : X — R

o We can’t invert d%, let's do the next best thing:

/:FX»—>77(D1(X)) frs{F: X—R: Cf

f}
o Correspondence: set-valued mapping, not a function!

o Wewrite [f={F:X—R: ‘Zl—f = f} (pre-image of f under d%)
o Any F € [ f has the form F(x) = F(x) 4+ C fora C € R

o F has no constant, i.e. F(minX) =0 or limy_infx F(x) =0

e F: accumulation at the left tail of the domain

o Notation: F(x) = [ f(x)dx = F(x) + C
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5. Multivariate Calculus: Integration

Indefinite Integrals: Some Rules

Theorem (Rules for Indefinite Integrals)

Let f, g be two integrable functions and let a, b € R be constants, n € N. Then
o [(af(x)+g(x))dx = a [ f(x)dx + [ g(x)dx
o [x"dx = %—}-Cifn;é—l and [1dx =In(x)+ C,
° fexdx =€+ Cand [eff(x)dx = ef™ + C,

° f x)dx = Z5(F(x))"1 4+ C if n # landf:,();)dx—
In(f (X))+C.

Theorem (Integration by parts)

Let u, v be two differentiable functions. Then,

/u(x)v’(x)dx = u(x)v(x) —/u’(x)v(x)dx.

.
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5. Multivariate Calculus: Integration

Definite Integrals

@ Accumulation is unique up to initial level C: For any
F=F+Ce [fandany x,y € X: F(y)— F(x) = F(y) — F(x)
— Uniquely defined Definite Integral:

/f (y) — F(X) where l:i(x)e _[{f}]

@ Zero initial accumulation function if X is an interval:

F(x)_/ f(t)dt where a=infX
a
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5. Multivariate Calculus: Integration

Conclusion Univariate Integration

Theorem (Fundamental Theorem of Calculus)

Let X be an interval in R with a = inf(X) and f : X — R. Suppose that f

is integrable, and define F := X — R, x — [ f(t)dt. Then, F is
differentiable, and

Wx € X : F(x) = Z—f(x) _ f(x).

@ Proof (see script) is stunningly easy relative to the theorem's
importance!

o Take-away
e Fix initial accumulation to define a unique integral

e This definite integral is inversely related to the derivative
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5. Multivariate Calculus: Integration

Multivariate Integration: Roadmap

@ We have formally discussed univariate integration

@ As with derivatives: if the multivariate integral exists, we can reduce
its computation to univariate integrals!

@ No formal details, rather only the “how-to”
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5. Multivariate Calculus: Integration
Multivariate Integration 1/2

Theorem (Fubini's theorem)

Let X and Y be two intervals in R, let f : X x Y — R and suppose that f
is continuous. Then, for any | = I, x I, C X x Y with intervals I, C X

andl, CY,
/If(x,y)d(x,y)Z/IX</ f(X,y)dy)dx,

Iy

and all the integrals on the right-hand side are well-defined.

General Fubini: for continuous f : X — R, X C R"

/If(x1,...,xn)d(X1,-~-,Xn)Z/Il<"'</In f(Xla---aXn)dX")"'>dX1'
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5. Multivariate Calculus: Integration

Multivariate Integration 2/2

Useful Corollary of Fubini:

Corollary (Integration of Multiplicatively Separable Functions)

Let Xr e R". X, € R™, f: X — R, g : X, — R continuous functions.
Then, for any intervals A C X¢, B C Xg,

| et = [ o) ([ ety ).
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