E600 Mathematics

Chapter 3: Multivariate Calculus

Martin Reinhard

August 29/30, 2022

1. Introduction

Motivation

This chapter discusses

- A formal introduction to multi-dimensional functions
- Key function properties: invertability, convexity (and concavity)
- Multivariate differentiation (main focus)
 - Formal definition and derivation
 - Application
- Multivariate integration: concept and key theorems

1. Introduction

Motivation

- Thus far: Linear Algebra (linear operations and equation systems)
- Now: analysis of functions, study of (small) variations
- Here: generalizing the derivative to functions $f: \mathbb{R}^n \mapsto \mathbb{R}^m$
- Why?: Optimization problems with many variables (goods, production inputs, statistical parameters)
- Many struggles in the 1st PhD semester were encountered because of issues with understanding derivatives...

1. Introduction

Key Concepts

- Function $f: X \mapsto Y$ with domain X, codomain Y and image im(f) = f[X]
 - $X \subseteq \mathbb{R}$: univariate function
 - $X \subseteq \mathbb{R}^n$: multivariate function
 - $Y \subseteq \mathbb{R}$: real-valued function
 - $Y \subseteq \mathbb{R}^m$: vector-valued function
 - How to call $f: \mathbb{R}^3 \mapsto \mathbb{R}^2$?
- Examples:
 - Multivariate, real-valued function: $x \mapsto ||x||, x \mapsto x'Ax, (x, y) \mapsto x \cdot y$
 - Multivariate, vector-valued function: $x \mapsto Ax$
- Graph:

$$G(f) = \{(x, y) \in X \times Y : y = f(x)\} = \{(x, f(x)) : x \in X\}$$

August 29/30, 2022

3 / 55

Invertability of Functions

- Inverse function f^{-1} of f: $f(f^{-1}(y)) = y$ and $f^{-1}(f(x)) = x$
 - More formally: $f^{-1} \circ f = Id_X$, $f \circ f^{-1} = Id_Y$
 - $Id_Z: Z \mapsto Z, z \mapsto z$ is the identity function
 - Consistent with our usual notion of inversion " $x \cdot x^{-1} = 1$ "
- Ch. 0: For $X, Y \subseteq \mathbb{R}$, we can *invert* $f: X \mapsto Y$ if and only if for every $y \in Y$ we have exactly one $x(y) \in X$ so that f(x(y)) = y
- The two conditions transfer to arbitrary X, Y: for every $y \in Y, \ldots$
 - at least one x maps to y ("surjectivity"): $\exists x \in X : f(x) = y$
 - at most one x maps to y ("injectivity"): $x_1 \neq x_2 \Rightarrow f(x_1) \neq f(x_2)$
- Easy to show: f invertible $\Leftrightarrow f$ bijective (= injective + surjective)
 - Idea: f^{-1} maps y to the unique x(y) that maps to y under f

Convexity (and Concavity) of General Functions

Definition (Convex and Concave Real Valued Function)

Let $X \subseteq \mathbb{R}^n$ be a convex set. A function $f: X \to \mathbb{R}$ is convex if for any $x, y \in X$ and $\lambda \in [0,1]$,

$$f(\lambda x + (1 - \lambda)y) \le \lambda f(x) + (1 - \lambda)f(y)$$

Moreover, if for any $x, y \in X$ such that $y \neq x$ and $\lambda \in (0,1)$,

$$f(\lambda x + (1 - \lambda)y) < \lambda f(x) + (1 - \lambda)f(y)$$

we say that f is strictly convex. Moreover, we say that f is (strictly) concave if -f is (strictly) convex.

Alternative characterization of concavity (line 1) and strict concavity (line 2)

$$f(\lambda x + (1 - \lambda)y) \ge \lambda f(x) + (1 - \lambda)f(y)$$
 $\forall x, y \in X \forall \lambda \in [0, 1],$

$$f(\lambda x + (1-\lambda)y) > \lambda f(x) + (1-\lambda)f(y)$$
 $\forall x, y \in X$ so that $x \neq y$ and $\forall \lambda \in (0,1)$.

Martin Reinhard Ch. 3: Multivariate Calculus August 29/30, 2022 5/55

Convexity: Intuition

- In what follows: focus on convexity
- Recall: $\lambda x + (1 \lambda)y$ ($\lambda \in [0, 1]$) is a convex combination of x and y
 - Convexity of functions = statement about convex combinations across domain and codomain of the function!
 - $f(\lambda x + (1-\lambda)y)$ must always be well-defined o convex domain
- $G(f) \subseteq \mathbb{R}^2$ (i.e. f univariate, real-valued function):
 - $(1 \lambda)x + \lambda y$, $\lambda \in [0, 1]$ defines an interval between x and y
 - $\lambda = 0$: start from x
 - increasing λ moves away from x towards y
 - $(1 \lambda)f(x) + \lambda f(y)$ is the line piece connecting f(x) and f(y)
 - Let's draw a convex and a concave function

Convexity of Bivariate Functions

- $f: X \mapsto \mathbb{R}, X \subseteq \mathbb{R}^2$
- For any fixed $x, y \in X$, $(1 - \lambda)x + \lambda y = x + \lambda(y - x)$ expands in a single direction

- Gives univariate function $t \mapsto f(x + t(y x))$
- \Rightarrow convex?

Convexity of Multivariate Functions

- Also for $X \subseteq \mathbb{R}^n$: fixing $x, y \in X$ reduces convexity to one dimension
- \rightarrow f is convex if and only if any univariate reduction is convex
 - After picking $x \in X$, choosing $y \in X$ arbitrarily is equivalent to choosing $z \in \mathbb{R}^n$ with $x + z \in X$ arbitrarily (z = y x). This gives:

Theorem (Graphical Characterization of Convexity)

Let $X \subseteq \mathbb{R}^n$ be a **convex set** and $f: X \mapsto \mathbb{R}$. Then, f is (strictly) convex if and only if $\forall x \in X$ and $\forall z \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ with $x + z \in X$, the function $g: \mathbb{R} \mapsto \mathbb{R}, t \mapsto f(x + tz)$ is (strictly) convex.

Let's use this theorem ("strictly" variant) to give an example of a convexity proof.

Convexity of Multivariate Functions: A Corollary

Corollary (Disproving Convexity)

Let $X \subseteq \mathbb{R}^n$ be a **convex set** and $f: X \mapsto \mathbb{R}$. Then, if there exist $x_0 \in X$ and $i \in \{1, ..., n\}$ such that $g: \mathbb{R} \mapsto \mathbb{R}, t \mapsto f(t \mapsto x + t \cdot e_i)$ is not (strictly) convex, then f is not (strictly) convex.

- Necessary condition of convexity: convex in every fundamental direction of \mathbb{R}^n
- Consider $f: \mathbb{R}^n_+ \mapsto \mathbb{R}^n$ with

$$f(x) = h(x_1, \dots, x_{n-1}) \cdot \sqrt{x_n}$$

where h is an arbitrarily complex, unspecified function. Is f convex?

4□▶ 4□▶ 4□▶ 4□▶ □ 900

Weak Convexity

- Optimization: convexity immensely helpful, but restrictive concept
- Can we weaken the concept and preserve (most of!) the desirable properties? Yes!
- Level sets in the domain of f:

Definition (Lower and Upper Level Set of a Function)

Let $X \subseteq \mathbb{R}^n$ be a convex set and $f: X \to \mathbb{R}$ be a real-valued function. Then, for $c \in \mathbb{R}$, the sets

$$L_c^- := \{x \in X : f(x) \le c\}$$
 and $L_c^+ := \{x \in X : f(x) \ge c\}$

are called the lower-level and upper level set of f at c, respectively.

- 4 ロ ト 4 個 ト 4 恵 ト 4 恵 ト - 恵 - からで

Level Sets of Convex and Concave Functions

Quasi-convex (-concave) function: any lower (upper) level set convex

11 / 55

Level Sets of Quasi-Convex and -Concave Functions

Which functions are quasi-convex/quasi-concave? Which are quasi-linear?

- Quasi-linear: both quasi-convex and quasi-concave
 - Intuition: only linear functions are both convex and concave

Quasi-Convexity: Workable Definitions

Martin Reinhard

Theorem (Quasiconvexity, Quasiconcavity)

Let $X \subseteq \mathbb{R}^n$ be a convex set. A real-valued function $f: X \to \mathbb{R}$ is quasiconvex if and only if

$$\forall x, y \in X \forall \lambda \in [0, 1] : f(\lambda x + (1 - \lambda)y) \le \max\{f(x), f(y)\}$$

Conversely, f is quasiconcave if and only if

$$\forall x, y \in X \forall \lambda \in [0,1] : (\lambda x + (1-\lambda)y) \ge \min\{f(x), f(y)\}\$$

Analogous *definition*: Strict Quasiconvexity (line 1), Strict Quasiconcavity (line 2)

$$\forall x, y \in X \text{ such that } x \neq y \text{ and } \forall \lambda \in (0,1) : f(\lambda x + (1-\lambda)y) < \max\{f(x), f(y)\}$$

$$\forall x, y \in X \text{ such that } x \neq y \text{ and } \forall \lambda \in (0,1) : f(\lambda x + (1-\lambda)y) > \min\{f(x), f(y)\}$$

Ch. 3: Multivariate Calculus

□ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶ < □ ▶

August 29/30, 2022

13 / 55

What and Why?

- What is (multivariate) Calculus? Defininition Wikipedia (summarized)
 - "Mathematical study of continuous change"
 - Differential calculus: instantaneous/marginal rates of change and slopes of curves
 - Integral calculus: accumulation of quantities, areas under and between curves
 - Fundamental theorem of calculus: integration and differentiation are inverse operations (intuition?)
- Why care?
 - Cannot optimize without derivatives
 - Economics: marginal utility, accumulations across households

Differentiation: Review Univariate, Real-Valued Functions

- As before: start from what we know and generalize
- If $X \subseteq \mathbb{R}$, what is "the slope" of $f: X \mapsto \mathbb{R}$?
- Relative change of f(x) given variation in x at $x_0 \in X$:

$$\frac{\Delta f(x)}{\Delta x} := \frac{f(x) - f(x_0)}{x - x_0} = \frac{f(x_0 + h) - f(x_0)}{h}, \quad h := x - x_0 \in \mathbb{R}$$

• Marginal/instantaneous rate of change: limit $h \to 0$ (existence?)

Differentiation: Review Univariate, Real-Valued Functions

Definition (Univariate Real-Valued Function: Differentiability and Derivative)

Let $X \subseteq \mathbb{R}$ and consider the function $f: X \mapsto \mathbb{R}$. Let $x_0 \in X$. If

$$\lim_{h\to 0}\frac{f(x_0+h)-f(x_0)}{h}$$

exists, f is said to be differentiable at x_0 , and we call this limit the **derivative of** f **at** x_0 , denoted by $f'(x_0)$. If for all $x_0 \in X$, f is differentiable at x_0 , f is said to be differentiable over X or differentiable. Then, the function $f': X \mapsto \mathbb{R}, x \mapsto f'(x)$ is called the **derivative** of f.

- Differentiability: point-specific vs. domain (e.g. | · |)
- Derivative f' = function, derivative at x_0 , $f'(x_0) =$ real number!

Ch. 3: Multivariate Calculus

Differentiation: Review Univariate, Real-Valued Functions

Definition (Univariate Real-Valued Functions: Differential Operator)

Let $X \subseteq \mathbb{R}$, define $D^1(X,\mathbb{R}) = \{f : X \mapsto \mathbb{R} : f \text{ is differentiable over } X\}$, and let $F_X := \{f : X \mapsto \mathbb{R}\}$. Then, the differential operator is defined as the function

$$\frac{d}{dx}:D^1(X,\mathbb{R})\mapsto F_X,f\mapsto f'$$

where f' denotes the derivative of $f \in D^1(X, \mathbb{R})$.

- (Differential) Operator: function between function spaces
- $f' = \frac{d}{dx}(f)$ is a specific value in the codomain of $\frac{d}{dx}$ (just like f'(x))
- Formally precise $f'(x) = \left[\frac{d}{dx}(f)\right](x)$ vs. convention: $f'(x) = \frac{df}{dx}(x)$
- Please don't write $\frac{df(x)}{dx}$

↓□▶ ↓□▶ ↓□▶ ↓□▶ ↓□ ♥ ♀○

Differentiation: Review Univariate, Real-Valued Functions

- Levels of objects in differentiation: operator, function, value
- Let's practice this distinction with some common rules
- Basis operations in function spaces (X: domain of function(s))
 - "+": f + g is such that $\forall x \in X : (f + g)(x) = f(x) + g(x)$
 - "·": λf is such that $\forall x \in X : (\lambda f)(x) = \lambda \cdot f(x)$
- Function product $(fg)(x) = f(x) \cdot g(x)$
- quotient in analogy if $\forall x \in X : g(x) \neq 0$

Differentiation: Review Univariate, Real-Valued Functions

Theorem (Rules for Univariate Derivatives)

Let $X \subseteq \mathbb{R}$, $f, g \in D^1(X, \mathbb{R})$ and $\lambda, \mu \in \mathbb{R}$. Then,

- (i) (Linearity) $\lambda f + \mu g$ is differentiable and $\frac{d}{dx}(\lambda f + \mu g) = \lambda \frac{df}{dx} + \mu \frac{dg}{dx}$,
- (ii) (Product Rule) The product fg is differentiable and $\frac{d}{dx}(fg) = \frac{df}{dx} \cdot g + f \cdot \frac{dg}{dx}$
- (iii) (Quotient Rule) If $\forall x \in X$, $g(x) \neq 0$, the quotient f/g is differentiable and $\frac{d}{dx}(f/g) = \frac{\frac{df}{dx} \cdot g f \cdot \frac{dg}{dx}}{g \cdot g}$
- (iv) (Chain Rule) if $g \circ f$ exists, the function is differentiable and $\frac{d}{dx}(g \circ f) = \left(\frac{dg}{dx} \circ f\right) \cdot \frac{df}{dx}$.

Script: rules for specific values and differentiability at $x_0 \in X$

◆ロト ◆団 ト ◆ 豆 ト ◆ 豆 ・ 夕 Q ○

Differentiation: Properties to Generalize

- Now: local behavior of multivariate functions we cannot sketch?
- For univariate, real-valued functions, differentiability of f at $x_0 \in X$ implies. . .
 - **①** continuity at x_0
 - **2** Existence of a good linear approximation to f around x_0
 - and differentiability of f on $(a, b) \subseteq \mathbb{R}$ implies that
 - \odot the **sign** of f' is determines if the function is increasing, decreasing, or constant

Differentiation: "Good Linear Approximation"?

- Taylor = key take-away from this class!
- First order Taylor approximation to f at x_0 :

$$T_{1,x_0}(x) = f(x_0) + f'(x_0)(x - x_0)$$

- Error: $\varepsilon_{1,x_0}(x) := f(x) T_{1,x_0}(x)$ (formula: next slide)
- "Good" approximation: $\lim_{x\to x_0} \frac{\varepsilon_1(x)}{x-x_0} = 0$ (intuition?; caution?)
- Taylor *expansion* of first order: decomposition of *f* into linear and (non-linear) remainder term, i.e.

$$f(x) = T_{1,x_0}(x) + \varepsilon_{1,x_0}(x)$$

• Expansion includes the error, approximation does not

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

Taylor of Generalized Order: Definition

Theorem (Taylor Expansion for Univariate Functions)

Let $X \subseteq \mathbb{R}$ and $f \in D^d(X,\mathbb{R})$ where $d \in \mathbb{N} \cup \{\infty\}$. For $N \in \mathbb{N} \cup \{\infty\}$, $N \le k$, the Taylor expansion of order N for f at $x_0 \in X$ is

$$f(x) = T_{N,x_0}(x) + \varepsilon_{N,x_0}(x) = f(x_0) + \sum_{n=1}^{N} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n + \varepsilon_{N,x_0}(x),$$

where $\varepsilon_{N,x_0}(x)$ is the approximation error of T_{N,x_0} for f at $x \in X$. Then, the approximation quality satisfies $\lim_{h\to 0} \varepsilon_{N,x_0}(x_0+h)/h^N=0$. Further, if f is N+1 times differentiable, there exists a $\lambda \in (0,1)$ such that

$$\varepsilon_{N,x_0}(x_0+h)=\frac{f^{(N+1)}(x_0+\lambda h)}{(N+1)!}h^{N+1}.$$

• Faculty of $n \in \mathbb{N}$: $n! = 1 \cdot 2 \cdot \ldots \cdot (n-1) \cdot n$

Martin Reinhard Ch. 3: Multivariate Calculus August 29/30, 2022 22/55

Taylor of Generalized Order: Comments

- Approximation quality: $\lim_{h\to 0} \varepsilon_N(x_0+h)/h^N=0$
 - The larger N, the "faster" $h^N \to 0$ (think 0.1^n for increasing n)
 - Larger N increase order of approximation quality
 - Script gives proof for N = 1, 2, general intuition is similar
- Mean Value Theorem (corollary of Taylor's theorem): for any differentiable $f: X \mapsto \mathbb{R} \ (X \subseteq \mathbb{R})$, for any $x_1, x_2 \in X$ such that $x_2 > x_1$, there exists $x^* \in (x_1, x_2)$ such that

$$f'(x^*) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}.$$

- Useful to check if *critical values* (f'(x) = 0) exist
- Proof: see exercises

Differentiation: Multivariate Real-Valued Functions

- Roadmap for multivariate derivatives $(f: X \mapsto Y, \text{ esp. } X \subseteq \mathbb{R}^n)$
 - 4 How to formally think about a multivariate derivative?
 - derivative should describe expansion in any possible direction
 - $X \subseteq \mathbb{R}$: variation on an infinitely small intervall/ball around x_0
 - ② Does an intuitively plausible candidate meet the formal definition?
- Recall: convergence
 - univariate: $\lim_{x\to 0} f(x) = c$: $|f(x) c| < \varepsilon$ for $|x 0| = |x| < \delta$
 - multivariate: $\lim_{x\to 0} f(x) = c$: $|f(x) c| < \varepsilon$ for $||x|| < \delta$
 - \rightarrow tells us how to think about " $\lim_{h\to 0}$ " more generally!

The Derivative – an Equivalent Characterization

• when n = 1, d^* is the derivative of f at x_0 if

$$d^* = \lim_{h \to 0} \frac{f(x_0 + h) - f(x_0)}{h}$$

- Problem: if n > 1, the denominator has a *vector*; not defined
- But: expression is equivalent to (let's see why)

$$\lim_{h \to 0} \frac{|f(x_0 + h) - f(x_0) - d^* \cdot h|}{\|h\|} = 0$$

where $\|\cdot\|$ is a norm on \mathbb{R} ; and norms generalize to \mathbb{R}^n !

Definition (Multivariate Derivative of Real-valued Functions)

Let $X \subseteq \mathbb{R}^n$ and $f: X \mapsto \mathbb{R}$. Further, let $x_0 \in \text{int}(X)$ (interior point). Then, f is differentiable at x_0 if there exists $d^* \in \mathbb{R}^{1 \times n}$ such that

$$\lim_{\|h\|\to 0} \frac{|f(x_0+h)-f(x_0)-d^*h|}{\|h\|} = 0.$$

Then, we call d^* the derivative of f at x_0 , denoted $\frac{df}{dx}(x_0)$ or $D_f(x_0)$. If f is differentiable at any $x_0 \in X$, we say that f is differentiable, and we call $\frac{df}{dx}: X \mapsto \mathbb{R}, x \mapsto \frac{df}{dx}(x)$ the derivative of f.

- Interior point: able to consider balls around x_0 on which f is defined
- Most textbooks use $D_f(x_0)$ rather than $\frac{df}{dx}(x_0)$, is the same thing!
- Derivative operator as before: mapping between function spaces

Definition (Multivariate Derivative of Vector-valued Functions)

Let $X \subseteq \mathbb{R}^n$ and $f: X \mapsto \mathbb{R}^m$. Further, let $x_0 \in int(X)$ (interior point). Denote $\|\cdot\|$ as a norm of \mathbb{R}^k , $k \in \{n, m\}$. Then, f is differentiable at x_0 if there exists a matrix $D^* \in \mathbb{R}^{m \times n}$ such that

$$\lim_{n\|h\|\to 0} \frac{_m\|f(x_0+h)-f(x_0)-D^*h\|}{_n\|h\|}=0,$$

Then, we call D^* the derivative of f at x_0 , denoted $\frac{dt}{dx}(x_0)$ or $D_f(x_0)$. If f is differentiable at any $x_0 \in X$, we say that f is differentiable, and we call $\frac{df}{dx}: X \mapsto \mathbb{R}^{m \times n}, x \mapsto \frac{df}{dx}(x)$ the derivative of f.

- Numerator norm: codomain, denominator norm: domain
- Derivative as matrix: D^*h must be vector of same length as f(x)
- Actually: encompasses the previous definition (m = 1)

Martin Reinhard

Ch. 3: Multivariate Calculus

August 29/30, 2022

27 / 55

Generalizing the Derivative - Status Quo

- Roadmap for multivariate derivatives
 - √ How to formally think about a multivariate derivative?
 - 2 Does an intuitively plausible candidate meet the formal definition?
- Idea:
 - For n=1, $\frac{df}{dx}(x_0)$ is scalar and characterizes the instantaneous change along the one axis (i.e., fundamental direction) of \mathbb{R}
 - For n > 1, $\frac{df}{dx}(x_0)$ is a vector of length $n \to$ collection of instantaneous changes along all n individual axes of \mathbb{R}^n ?
- Tool: directional derivative: allows to study the behavior of f around x_0 in a single direction $z \neq \mathbf{0}$

Partial Derivatives, Gradient

- Directional derivative: let $f_{z,x_0}: \mathbb{R} \mapsto \mathbb{R}, t \mapsto f(x_0 + tz)$ for $z \neq \mathbf{0}$
 - Univariate directional derivative of f in direction z at x_0 : $\frac{df_{z,x_0}}{dt}(0)$
 - Evaluated at t = 0: focus on local behavior around $x_0 = x_0 + 0 \cdot z$
- Partial derivative of f at x_0 with respect to x_i :

$$\frac{\partial f}{\partial x_j}(x_0) = \frac{df_{e_j,x_0}}{dt}(0) = \frac{d}{dt}f(x_0 + te_j)|_{t=0}
= \frac{d}{dt}[f(x_{0,1}, \dots, x_{0,j-1}, \mathbf{x_{0,j}} + \mathbf{t}, x_{0,j+1}, \dots x_{0,n})]|_{t=0}$$

- Variation along j-th axis around x_0 ("holding x_l , $l \neq j$ constant")
- Also: *j*-th partial derivative (of f at x_0); sometimes denoted $f_j(x_0)$
- Gradient: ordered collection of partial derivatives (row vector!)

$$\nabla f(x_0) = \left(\frac{\partial f}{\partial x_1}(x_0), \frac{\partial f}{\partial x_2}(x_0), \dots, \frac{\partial f}{\partial x_n}(x_0)\right)$$

Martin Reinhard Ch. 3: Multivariate Calculus August 29/30, 2022 29/55

Partial Derivatives and Gradient: Summary of Concepts

- Partial differentiability
 - $f: X \mapsto \mathbb{R}$ partially differentiable (p.d.) at x_0 : all partial derivatives $\frac{\partial f}{\partial x_j}(x_0)$ and therefore the gradient at $x_0 \in X$, $\nabla f(x_0)$, exists
 - "point-specific to general": $f: X \mapsto \mathbb{R}$ p.d.: f p.d. at any $x_0 \in X$
 - Set of p.d. functions from X to \mathbb{R} : $D^1_p(X,\mathbb{R}) = \{f : X \mapsto \mathbb{R} : f \text{ is p.d.}\}$
- Recall: univariate derivative is a real-valued function
 - $\frac{\partial f}{\partial x_j}: X \mapsto \mathbb{R}$, $x_0 \mapsto \frac{\partial f}{\partial x_j}(x_0)$ is a real-valued function
 - $\nabla f: X \mapsto \mathbb{R}^{1 \times n}$, $x_0 \mapsto \nabla f(x_0)$ is a (real row-)vector-valued function
- associated operators: mappings between function spaces
 - $\frac{\partial}{\partial x_j}: D^1_p(X, \mathbb{R}) \mapsto F_X, f \mapsto f_j = \frac{\partial f}{\partial x_j}$
 - $\nabla: D_p^1(X,\mathbb{R}) \mapsto F_X^{1\times n}, f \mapsto \nabla f$

Partial Derivatives and Gradient: Some Examples

Consider the following functions $\mathbb{R}^2 \mapsto \mathbb{R}$:

- $f^1(x_1, x_2) = x_1 + x_2$
- $f^2(x_1, x_2) = x_1x_2$
- $f^3(x_1, x_2) = x_1 x_2^2 + \cos(x_1)$

Consider an arbitrary point $x_0 = x \in \mathbb{R}$. Compute the gradients of f^1 , f^2 and f^3 at $x_0!$

How do the partial derivatives depend on the location x?

Now for the actual derivative: can we use the gradient?

Generalizing the Derivative – the Last Step

Theorem (The Gradient and the Derivative)

Let $X \subseteq \mathbb{R}^n$ and $f: X \mapsto \mathbb{R}$ such that f is differentiable at $x_0 \in int(X)$. Then, all partial derivatives of f at x_0 exist, and $\frac{df}{dx}(x_0) = \nabla f(x_0)$.

• Verbally: "derivative exists \Rightarrow derivative = gradient"; what about \Leftarrow ?

Theorem (Partial Differentiablility and Differentiability)

Let $X \subseteq \mathbb{R}^n$, $f: X \mapsto \mathbb{R}$ and $x_0 \in int(X)$. If all the partial derivatives of f at x_0 exist and are continuous, then f is differentiable.

• Set of continuously differentiable functions:

$$C^1(X,\mathbb{R}) := \left\{ f: X \mapsto \mathbb{R} : \left(orall j \in \{1,\ldots,n\} : rac{\partial f}{\partial x_j} ext{ is continuous}
ight)
ight\}$$

• $f \in C^1(X,\mathbb{R}) \Rightarrow f$ is differentiable

32 / 5<u>5</u>

Martin Reinhard Ch. 3: Multivariate Calculus August 29/30, 2022

Generalizing the Derivative - Summary and Practice

- Partial differentiability and differentiability
 - Generally, if f is differentiable, the derivative is equal to the gradient
 - \Rightarrow If the gradient does not exist, f is not differentiable
 - Theoretically: may encounter weird D^1 but not C^1 functions; issue not too relevant in (economic) practice
- In applications: taking the derivative of $f: X \mapsto \mathbb{R}, X \subseteq \mathbb{R}^n$
 - **1** Compute the gradient ∇f (if it exists)
 - ② Are all partial derivatives continuous? If so: ∇f is the derivative!
- What about $f: X \mapsto \mathbb{R}^m$?

Vector-valued Functions 1/3

- Consider $X \subseteq \mathbb{R}^n$, $f: X \mapsto \mathbb{R}^m$
- f is ordered collection of real-valued functions which we already know how to handle:

$$f = \begin{pmatrix} f^1 \\ f^2 \\ \vdots \\ f^m \end{pmatrix} \text{ so that } \forall x \in X : f(x) = \begin{pmatrix} f^1(x) \\ f^2(x) \\ \vdots \\ f^m(x) \end{pmatrix}$$

where for any $i \in \{1, ..., m\}$, $f^i : X \mapsto \mathbb{R}$ (example?)

• Idea: ordered collection of derivatives, i.e.

$$\frac{df}{dx} = \begin{pmatrix} \nabla f^1 \\ \nabla f^2 \\ \vdots \\ \nabla f^m \end{pmatrix}$$

Vector-valued Functions 2/3

Definition (Jacobian)

Let $n, m \in \mathbb{R}^n$, $X \subseteq \mathbb{R}^n$ and $f : X \mapsto \mathbb{R}^m$ and for $i \in \{1, ..., m\}$, let $f^i : \mathbb{R}^n \mapsto \mathbb{R}$ such that $f = (f^1, ..., f^m)'$. Let $x_0 \in X$. Then, if at x_0 , $\forall i \in \{1, ..., m\}$, f^i is partially differentiable with respect to any x_j , $j \in \{1, ..., n\}$, we call

$$J_{f}(x_{0}) = \begin{pmatrix} \nabla f^{1}(x_{0}) \\ \nabla f^{2}(x_{0}) \\ \vdots \\ \nabla f^{m}(x_{0}) \end{pmatrix} = \begin{pmatrix} f_{1}^{1}(x_{0}) & f_{2}^{1}(x_{0}) & \dots & f_{n}^{1}(x_{0}) \\ f_{1}^{2}(x_{0}) & f_{2}^{2}(x_{0}) & \dots & f_{n}^{2}(x_{0}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{1}^{m}(x_{0}) & f_{2}^{m}(x_{0}) & \dots & f_{n}^{m}(x_{0}) \end{pmatrix}$$

the Jacobian of f at x_0 . If the above holds at any $x_0 \in X$, we call the mapping $J_f : \mathbb{R}^n \mapsto \mathbb{R}^{n \times m}, x_0 \mapsto J_f(x_0)$ the Jacobian of f.

• All partial derivative of any f^i must exist (we write $f \in D^1_p(X, \mathbb{R}^n)$)

Martin Reinhard Ch. 3: Multivariate Calculus August 29/30, 2022

35 / 55

Vector-valued Functions 3/3

• Jacobian collects expansion in all fundamental directions of all sub-functions f^i , $i \in \{1, ..., m\}$. \rightarrow Jacobian = derivative?

Theorem (The Jacobian and the Derivative)

Let $X \subseteq \mathbb{R}^n$, $f: X \mapsto \mathbb{R}^m$ and $f^1, \ldots, f^m: X \mapsto \mathbb{R}$ such that $f = (f^1, \ldots, f^m)'$. Further, let $x_0 \in \operatorname{int}(X)$ (interior point), and suppose that f is differentiable at x_0 . Then, for any f^i , $i \in \{1, \ldots, m\}$, all partial derivatives of f^i at x_0 exist, and $\frac{df}{dx}(x_0) = J_f(x_0)$.

• As before: derivative exists if all partial deriv's are continuous

4. Multivariate Calculus: Differentiation A step back

- Why did our intuitive conjecture correspond to the derivative?
- Recall lecture 1...
 - Vector spaces: generalize key intuitions of lower-dimensional spaces
 - Minimal structure (addition and multiplication by a constant)...
 - ...and an axiomatic way of thinking about distances
 - ... was all we needed to generalize a complex and important concept such as function differentiation

Multivariate Differentiation Rules

Theorem (Rules for Multivariate Derivatives)

Let $X \subseteq \mathbb{R}^n$, $f,g: X \mapsto \mathbb{R}^m$ and $h: \mathbb{R}^m \mapsto \mathbb{R}^k$. Suppose that f,g and h are differentiable functions. Then,

- (i) (Linearity) For all $\lambda, \mu \in \mathbb{R}$, $\lambda f + \mu g$ is differentiable and $\frac{d(\lambda f + \mu g)}{dx} = \lambda \frac{df}{dx} + \mu \frac{dg}{dx}$.
- (ii) (Product Rule) $f' \cdot g$ is differentiable and $\frac{d(f'g)}{dx} = f' \cdot \frac{dg}{dx} + g' \cdot \frac{df}{dx}$.
- (iii) (Chain Rule) $h \circ f$ is differentiable and $\frac{d(h \circ f)}{dx} = (\frac{dh}{dx} \circ f) \cdot \frac{df}{dx}$.
 - Product rule: f', g' = transpose, not derivative; Quotient rule?
 - Careful about order (matrix products are not commutative)!
 - CR variant: for f(g(x)) = f(y(x), x) (L: precise; R: convention):

$$\frac{df \circ g}{dx} = \frac{\partial f \circ g}{\partial y} \frac{dy}{dx} + \frac{\partial f \circ g}{\partial x} \quad \text{vs.} \quad \frac{df}{dx} = \frac{\partial f}{\partial y} \frac{dy}{dx} + \frac{\partial f}{\partial x}$$

Second Derivative

- Thus far: first derivative operator $(\cdot)'$ generalized to ∇/J
- In univariate, real-valued case: f'' = (f')', we can generalize this logic
- Recall: derivative increases order in codomain
 - Derivative of $f: \mathbb{R}^n \mapsto \mathbb{R}$ is vector-valued: $\nabla f: \mathbb{R}^n \mapsto \mathbb{R}^{1 \times n}$
 - Derivative of $f: \mathbb{R}^n \mapsto \mathbb{R}^m$ is matrix-valued: $J_f: \mathbb{R}^n \mapsto \mathbb{R}^{m \times n}$
 - Derivative of Jacobian?
 - ...Let's focus on real-valued functions to avoid the third dimension
- Expectation: first derivative is vector → second is matrix
 - First derivative = gradient: $\nabla f : \mathbb{R}^n \mapsto \mathbb{R}^{1 \times n}$
 - Second derivative = derivative of transposed gradient: $\frac{d}{dx}(\nabla f)'$

Second Derivative: Hessian

• If $\frac{\partial f}{\partial x_i}$ is differentiable at x_0 , the (i,j)-second order partial derivative at x_0 is

$$f_{i,j}(x_0) = \frac{\partial f_i}{\partial x_j}(x_0) = \frac{\partial^2 f}{\partial x_i \partial x_j}(x_0)$$

Definition (Hessian or Hessian Matrix)

Let $X \subseteq \mathbb{R}^n$ be an open set and $f: X \mapsto \mathbb{R}$. Further, let $x_0 \in X$, and suppose that f is differentiable at x_0 and that all second order partial derivatives of f at x_0 exist. Then, the Hessian of f at x_0 is the matrix

$$H_{f}(x_{0}) = \begin{pmatrix} \nabla f_{1}(x_{0}) \\ \nabla f_{2}(x_{0}) \\ \vdots \\ \nabla f_{n}(x_{0}) \end{pmatrix} = \begin{pmatrix} f_{1,1}(x_{0}) & f_{1,2}(x_{0}) & \cdots & f_{1,n}(x_{0}) \\ f_{2,1}(x_{0}) & f_{2,2}(x_{0}) & \cdots & f_{2,n}(x_{0}) \\ \vdots & \vdots & \ddots & \vdots \\ f_{n,1}(x_{0}) & f_{n,2}(x_{0}) & \cdots & f_{n,n}(x_{0}) \end{pmatrix}$$

• If $(\nabla f)'$ is differentiable, we already know that $\frac{d}{dx}(\nabla f)' = H_f!$

Martin Reinhard Ch. 3: Multivariate Calculus August 29/30, 2022 40/55

Higher Order Partial Derivatives

• Let $C^k(X) = C^k(X, \mathbb{R})$ (codomain \mathbb{R} as implicit second argument):

$$C^k(X) = \{f : X \mapsto \mathbb{R} : All \text{ } k\text{-th order part. deriv's are continuous} \}$$

Theorem (Schwarz's Theorem/Young's Theorem)

Let $X \subseteq \mathbb{R}^n$ be an open set and $f : \mathbb{R}^n \mapsto \mathbb{R}$. If $f \in C^k(X)$, then the order in which derivatives up to order k are taken can be permuted.

- If $f \in C^2(X)$, then
 - $\nabla f \in C^1(X) \Rightarrow$ differentiable, and
 - derivative = Hessian is symmetric!

Corollary (Hessian and Gradient)

Let $X \subseteq \mathbb{R}^n$ and $f \in C^2(X)$. Then, the Hessian is symmetric and corresponds to the Jacobian of the transposed gradient: $H_f = J_{(\nabla f)'}$.

Computing the Second Derivative: An Example

Let $f(x_1, x_2) = x_1 x_2^2$. Is f twice differentiable? If so, compute the second derivative!

Taylor's Theorem for Multivariate Functions

Theorem (Second Order Multivariate Taylor Approximation)

Let $X \subseteq \mathbb{R}^n$ be an open set and consider $f \in C^2(X)$. Let $x_0 \in X$. Then, the second order Taylor approximation to f at $x_0 \in X$ is

$$T_{2,x_0}(x) = f(x_0) + \nabla f(x_0) \cdot (x - x_0) + \frac{1}{2}(x - x_0)' \cdot H_f(x_0) \cdot (x - x_0).$$

The error $\varepsilon_{2,x_0}(x) = f(x) - T_{2,x_0}(x)$ approaches 0 at a faster rate than $||x - x_0||^2$, i.e. $\lim_{\|h\| \to 0} \frac{\varepsilon_{2,x_0}(x+h)}{\|h\|^2} = 0$.

- Zero and first order approximation in analogy
- Error formula for first order: there exists $\lambda \in (0,1)$ so that

$$\varepsilon_{1,x_0}(x_0+h)=\frac{1}{2}h'\cdot H_f(x_0+\lambda h)\cdot h$$

• Taylor expansion like before

4□ > 4□ > 4 = > 4 = > = 90

Total Derivative: Directional Derivative for Economics

• Directional derivative of f at x_0 in direction $z \neq \mathbf{0}$ (Chain Rule):

$$\frac{d}{dt}f(x_0+tz)\big|_{t=0}=\nabla f(x_0)\cdot z=\sum_{i=1}^n\frac{\partial f}{\partial x_i}(x_0)\cdot z_i$$

• Notation: $z = (dx_1, \dots, dx_n)$ as vector of *relative variation* in the arguments; df as resulting *relative* induced marginal change

$$df = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} dx_i; \qquad df(x_0) = \sum_{i=1}^{n} \frac{\partial f}{\partial x_i} (x_0) dx_i$$

- In economics:
 - ullet variation in fixed ratios/specific directions o comparative statics
 - Consideration is *relative*: fix one reference variable j with $dx_j = 1$
 - Concerns marginal variation; do not consider fixed, non-zero changes!

Martin Reinhard Ch. 3: Multivariate Calculus August 29/30, 2022 44/55

Second Derivative and Convexity

- For $X \subseteq \mathbb{R}$, $f \in C^2(X)$ (proof in script):
 - **1** If is convex if and only if $\forall x \in X : f''(x) \ge 0$ (equivalent condition)
 - ② If $\forall x \in X : f''(x) > 0$, then f is strictly convex (sufficient condition)
- Recall: we can study $g: \mathbb{R} \mapsto \mathbb{R}, t \mapsto f(x+tz)$ for $x,z \in \mathbb{R}^n$, $z \neq \mathbf{0}$
 - If $f \in C^2(X)$ then especially $g \in C^2(\mathbb{R})$ for fixed x,z
 - Second derivative (chain rule; cf. directional derivative):

$$g''(t) = z'H_f(x+tz)z$$

- This implies:
 - **1** $\forall y \in X : (H_f(y) \text{ pos. semi-definite}) ⇔ f convex (proof in script)$
 - $\bigvee y \in X : (H_f(y) \text{ pos. definite}) \Rightarrow f \text{ strictly convex}$

Differentiation: Final Remarks

- A lot of notation and definitions...
- Key take-aways:
 - Gradients and Jacobians are the derivatives of multivariate functions
 - ...if the components (partial derivatives) are continuous; i.e. almost always
 - Intuition: summary of variation in fundamental directions of domain
 - 2 Taylor approximations give "good" polynomial approximations "close to" the approximation point
 - Second derivatives of real-valued multivariate functions ("Hessian") can be obtained from differentiating the (transposed) gradient
 - The definiteness of the Hessian determines convexity/concavity

Introduction 1/2

- f is the instantaneous change of its accumulation
- ightarrow If the integral measures accumulation, the function itself should be the integral's derivative!
 - Idea: obtain integral operator by inverting the derivative operator

$$\frac{d}{dx}: D^1(X) \mapsto F_X, f \mapsto \frac{df}{dx}$$

- Issue: recall that inversion requires injectivity ("one-to-one")
 - f(x) = 2x + 3 vs. f(x) = 2x
 - Problem: constants cancel out when taking the derivative
 - Derivative is unique up to the constant!

Introduction 2/2

Definition (Infimum and Supremum of a Set)

Let $X \subseteq \mathbb{R}$. Then, the infimum $\inf(X)$ of X is the largest value smaller than any element of X, i.e. $\inf(X) = \max\{a \in \mathbb{R} : \forall x \in X : x \geq a\}$, and the supremum $\sup(X)$ of X is the smallest value larger than any element of X, i.e. $\sup(X) = \min\{b \in \mathbb{R} : \forall x \in X : x \leq b\}$.

⇒ Generalized Maximum/Minimum

Indefinite Integrals

- Restrict attention to univariate, real-valued $f: X \mapsto \mathbb{R}$
- We can't invert $\frac{d}{dx}$, let's do the next best thing:

$$\int : F_X \mapsto \mathcal{P}(D^1(X)), f \mapsto \{\tilde{F} : X \mapsto \mathbb{R} : \frac{d\tilde{F}}{dx} = f\}$$

- Correspondence: set-valued mapping, not a function!
- We write $\int f = \{\tilde{F}: X \mapsto \mathbb{R}: \frac{d\tilde{F}}{dx} = f\}$ (pre-image of f under $\frac{d}{dx}$)
- Any $\tilde{F} \in \int f$ has the form $\tilde{F}(x) = F(x) + C$ for a $C \in \mathbb{R}$
 - F has no constant, i.e. $F(\min X) = 0$ or $\lim_{x \to \inf X} F(x) = 0$
 - F: accumulation at the left tail of the domain
 - Notation: $\tilde{F}(x) = \int f(x) dx = F(x) + C$

Indefinite Integrals: Some Rules

Theorem (Rules for Indefinite Integrals)

Let f, g be two integrable functions and let a, $b \in \mathbb{R}$ be constants, $n \in \mathbb{N}$. Then

- $\int (af(x) + g(x))dx = a \int f(x)dx + \int g(x)dx$,
- $\int x^n dx = \frac{x^{n+1}}{n+1} + C$ if $n \neq -1$ and $\int \frac{1}{x} dx = \ln(x) + C$,
- $\int e^x dx = e^x + C$ and $\int e^{f(x)} f'(x) dx = e^{f(x)} + C$,
- $\int (f(x))^n f'(x) dx = \frac{1}{n+1} (f(x))^{n+1} + C$ if $n \neq -1$ and $\int \frac{f(x)}{f'(x)} dx =$ ln(f(x)) + C.

Theorem (Integration by parts)

Let u, v be two differentiable functions. Then,

$$\int u(x)v'(x)dx = u(x)v(x) - \int u'(x)v(x)dx.$$

Definite Integrals

- Accumulation is unique up to initial level C: For any $\tilde{F} = F + C \in \int f$ and any $x, y \in X$: $\tilde{F}(y) \tilde{F}(x) = F(y) F(x)$
- → Uniquely defined Definite Integral:

$$\int_{x}^{y} f(t)dt = \tilde{F}(y) - \tilde{F}(x), \text{ where } \tilde{F}(x) \in \frac{d}{dx}^{-1}[\{f\}]$$

• Zero initial accumulation function if X is an interval:

$$F(x) = \int_{a}^{x} f(t)dt$$
 where $a = \inf X$

Conclusion Univariate Integration

Theorem (Fundamental Theorem of Calculus)

Let X be an interval in $\mathbb R$ with $a=\inf(X)$ and $f:X\mapsto\mathbb R$. Suppose that f is integrable, and define $F:=X\mapsto\mathbb R, x\mapsto\int_a^x f(t)dt$. Then, F is differentiable, and

$$\forall x \in X : F'(x) = \frac{dF}{dx}(x) = f(x).$$

- Proof (see script) is stunningly easy relative to the theorem's importance!
- Take-away
 - Fix initial accumulation to define a unique integral
 - This definite integral is inversely related to the derivative

◆□▶ ◆圖▶ ◆園▶ ◆園▶ ■ 釣り@

Multivariate Integration: Roadmap

- We have formally discussed univariate integration
- As with derivatives: if the multivariate integral exists, we can reduce its computation to univariate integrals!
- No formal details, rather only the "how-to"

Multivariate Integration 1/2

Theorem (Fubini's theorem)

Let X and Y be two intervals in \mathbb{R} , let $f: X \times Y \to \mathbb{R}$ and suppose that f is continuous. Then, for any $I = I_x \times I_y \subseteq X \times Y$ with intervals $I_x \subseteq X$ and $I_y \subseteq Y$,

$$\int_{I} f(x,y)d(x,y) = \int_{I_{x}} \left(\int_{I_{y}} f(x,y)dy \right) dx,$$

and all the integrals on the right-hand side are well-defined.

General Fubini: for continuous $f: X \mapsto R$, $X \subseteq \mathbb{R}^n$

$$\int_{I} f(x_1,\ldots,x_n)d(x_1,\ldots,x_n) = \int_{I_1} \left(\cdots \left(\int_{I_n} f(x_1,\ldots,x_n)dx_n\right)\cdots\right)dx_1.$$

Multivariate Integration 2/2

Useful Corollary of Fubini:

Corollary (Integration of Multiplicatively Separable Functions)

Let $X_f \in \mathbb{R}^n, X_b \in \mathbb{R}^m$, $f: X_f \to \mathbb{R}$, $g: X_b \to \mathbb{R}$ continuous functions. Then, for any intervals $A \subseteq X_f$, $B \subseteq X_g$,

$$\int_{A\times B} f(x)g(y)d(x,y) = \left(\int_A f(x)dx\right)\left(\int_B g(y)dy\right).$$