In-class Exercises for Chapter 4

Discussed in class on Wednesday, September 23

Topics: Multivariate Differentiation and Integration

Problem 1: Solution Existence for Univariate Concave Functions

Consider a univariate, real-valued function $f:(\underline{x},\bar{x}) \mapsto \mathbb{R}$, $\underline{x},\bar{x} \in \mathbb{R}$ so that $\underline{x} < \bar{x}$. Suppose that (i) f is once differentiable,

- (ii) f is concave, and that
- (iii) there exist $a, b, c \in (\underline{x}, \overline{x})$ with a < b < c so that f(a) < f(c) < f(b).

Can you argue that f assumes a global maximum on (\underline{x}, \bar{x}) ?

- Hint 1. Recall that concavity is a desirable feature in unconstrained maximization.
- Hint 2. Think about combining the Mean Value and Intermediate Value Theorem.

Problem 2: Existence of Solutions – Exploiting the Shape of the Function (online)

In practical applications, a common issue with the Weierstrass Extreme Value Theorem is that the support is not compact. For example, this is the case whenever we optimize over the whole \mathbb{R} or \mathbb{R}^n in unconstrained optimization or non-compact constraint sets, such as open interval-s/balls. Fortunately, in many cases, we can "compactify" the domain and avoid issues with solution existence in an elegant way. In this exercise, you will establish a corollary of Weierstrass that is a concrete example of this method.

Corollary 1. (Optimizing a Univariate Function with Non-vanishing Limits) Consider a function $f \in C^2(\mathbb{R})$, i.e. a function $f : \mathbb{R} \mapsto \mathbb{R}$ that is twice continuously differentiable. Assume that

1. There exist $a, b \in \mathbb{R}$ with $\lim_{x \to -\infty} f(x) = a$ and $\lim_{x \to \infty} f(x) = b$, that is, f does not diverge as $x \to \pm \infty$ but rather approaches fixed, real limits.

- 2. There exist $c_1, c_2 > 0$ such that either f'(x) > 0 for all $x \in \mathbb{R} \setminus [-c_1, c_2]$ (Case 1) or f'(x) < 0 for all $x \in \mathbb{R} \setminus [-c_1, c_2]$ (Case 2), that is, the sign of the derivative coincides for the limits $x \to \pm \infty$.
- 3. In Case 1, $b \le a$, and in Case 2, $a \le b$.

Then, f assumes both a global maximum and minimum, and the global extremizers are critical points of f.

a.) Graphical Intuition

Assume that f has exactly two critical points (i.e. points with f'(x) = 0). Can you illustrate the intuition of this corollary graphically for *Case 1*?

b.) Type of Extrema

When f has exactly two critical points, can you say one is the global maximum/minimum of f depending on which case (Case 1 or Case 2) you are in?

c.) Necessity of Limit Condition

Why do we need $b \le a$ in Case 1 and $a \le b$ in Case 2 to ensure existence of the global extrema?

d.) Formal Argument

Give a formal argument why the corollary holds, i.e. put the graphical intuition in a mathematical argument. You may restrict attention to *Case 1*.

Comment: An analogous argument can be made for *Case 2*. Because this case does not add an interesting particularity, we do not investigate the argument establishing it here.

Hint 1: Recall the definition of the limit $\lim_{x\to\infty} f(x)$: If $\lim_{x\to\infty} f(x) = c$, then

$$\forall \varepsilon > 0 \exists x^* \in \mathbb{R} : (\forall x > x^* : |f(x) - c| < \varepsilon)$$

Use this definition to restrict the investigation to a compact domain and apply Weierstrass. *Hint 2:* It may be easier to investigate existence of the global maximum and minimum in isolation.

e.) Application

Solve

$$\max_{x \in \mathbb{R}} \frac{5x^2 - 2x}{6x^2 + 1}$$
 and $\min_{x \in \mathbb{R}} \frac{5x^2 - 2x}{6x^2 + 1}$

and, if there are global extremizers, compute the extreme values.

Problem 3: Saving Time in Optimization

Solve

$$\max \frac{4}{3}x^2 + y + xz$$
 s.t. $||(x, y, z)||_2 \le 1$

where $\|\cdot\|_2$ is the Euclidean norm of the \mathbb{R}^3 .

You will get a multitude solutions to the FOC. For any one of these, using the second order condition, you would have to check two determinants of the Bordered Hessian, one for a 3×3 and one for a 4×4 matrix. What may help to avoid this is that you can make an argument for solution existence, and also the Lagrangian multiplier condition.

Three simplifications and intuitions can be extremely helpful:

- If $||(x, y, z)||_2 < 1$, we can increase the objective varying marginally y.
- By norm non-negativity, $||(x,y,z)||_2 \le 1$ is equivalent to $||(x,y,z)||_2^2 \le 1^2$.
- Closed balls of the \mathbb{R}^n are compact.